Gjej x (complex solution)
x=\frac{\sqrt{3}i\sqrt[3]{-1+3\sqrt{7}i}}{6}-\frac{2\sqrt{3}i\left(-1+3\sqrt{7}i\right)^{-\frac{1}{3}}}{3}-\frac{\sqrt[3]{-1+3\sqrt{7}i}}{6}-\frac{2\left(-1+3\sqrt{7}i\right)^{-\frac{1}{3}}}{3}+\frac{2}{3}\approx -0.514868938
x=\frac{\sqrt[3]{-1+3\sqrt{7}i}+4\left(-1+3\sqrt{7}i\right)^{-\frac{1}{3}}+2}{3}\approx 1.792517214
x=-\frac{\sqrt{3}i\sqrt[3]{-1+3\sqrt{7}i}}{6}+\frac{2\sqrt{3}i\left(-1+3\sqrt{7}i\right)^{-\frac{1}{3}}}{3}-\frac{\sqrt[3]{-1+3\sqrt{7}i}}{6}-\frac{2\left(-1+3\sqrt{7}i\right)^{-\frac{1}{3}}}{3}+\frac{2}{3}\approx 0.722351724
Gjej x
x=\frac{2\left(-2\cos(\frac{\arccos(\frac{1}{8})}{3})+1\right)}{3}\approx -0.514868938
x=\frac{2\left(\sqrt{3}\sin(\frac{\arccos(\frac{1}{8})}{3})+\cos(\frac{\arccos(\frac{1}{8})}{3})+1\right)}{3}\approx 1.792517214
x=\frac{2\left(-\sqrt{3}\sin(\frac{\arccos(\frac{1}{8})}{3})+\cos(\frac{\arccos(\frac{1}{8})}{3})+1\right)}{3}\approx 0.722351724
Grafiku
Share
Kopjuar në clipboard
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}