Gjej x (complex solution)
x=\frac{37+\sqrt{91}i}{2}\approx 18.5+4.769696007i
x=\frac{-\sqrt{91}i+37}{2}\approx 18.5-4.769696007i
Grafiku
Share
Kopjuar në clipboard
x^{2}-37x+365=0
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-\left(-37\right)±\sqrt{\left(-37\right)^{2}-4\times 365}}{2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 1, b me -37 dhe c me 365 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-37\right)±\sqrt{1369-4\times 365}}{2}
Ngri në fuqi të dytë -37.
x=\frac{-\left(-37\right)±\sqrt{1369-1460}}{2}
Shumëzo -4 herë 365.
x=\frac{-\left(-37\right)±\sqrt{-91}}{2}
Mblidh 1369 me -1460.
x=\frac{-\left(-37\right)±\sqrt{91}i}{2}
Gjej rrënjën katrore të -91.
x=\frac{37±\sqrt{91}i}{2}
E kundërta e -37 është 37.
x=\frac{37+\sqrt{91}i}{2}
Tani zgjidhe ekuacionin x=\frac{37±\sqrt{91}i}{2} kur ± është plus. Mblidh 37 me i\sqrt{91}.
x=\frac{-\sqrt{91}i+37}{2}
Tani zgjidhe ekuacionin x=\frac{37±\sqrt{91}i}{2} kur ± është minus. Zbrit i\sqrt{91} nga 37.
x=\frac{37+\sqrt{91}i}{2} x=\frac{-\sqrt{91}i+37}{2}
Ekuacioni është zgjidhur tani.
x^{2}-37x+365=0
Ekuacionet e shkallës së dytë si ky mund të zgjidhen duke plotësuar katrorin. Për të plotësuar katrorin, ekuacioni duhet të jetë në fillim në formën x^{2}+bx=c.
x^{2}-37x+365-365=-365
Zbrit 365 nga të dyja anët e ekuacionit.
x^{2}-37x=-365
Zbritja e 365 nga vetja e tij jep 0.
x^{2}-37x+\left(-\frac{37}{2}\right)^{2}=-365+\left(-\frac{37}{2}\right)^{2}
Pjesëto -37, koeficientin e kufizës x, me 2 për të marrë -\frac{37}{2}. Më pas mblidh katrorin e -\frac{37}{2} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}-37x+\frac{1369}{4}=-365+\frac{1369}{4}
Ngri në fuqi të dytë -\frac{37}{2} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
x^{2}-37x+\frac{1369}{4}=-\frac{91}{4}
Mblidh -365 me \frac{1369}{4}.
\left(x-\frac{37}{2}\right)^{2}=-\frac{91}{4}
Faktori x^{2}-37x+\frac{1369}{4}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{37}{2}\right)^{2}}=\sqrt{-\frac{91}{4}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x-\frac{37}{2}=\frac{\sqrt{91}i}{2} x-\frac{37}{2}=-\frac{\sqrt{91}i}{2}
Thjeshto.
x=\frac{37+\sqrt{91}i}{2} x=\frac{-\sqrt{91}i+37}{2}
Mblidh \frac{37}{2} në të dyja anët e ekuacionit.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}