Kaloni tek përmbajtja kryesore
Gjej x
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

225+19.639^{2}=x^{2}
Llogarit 15 në fuqi të 2 dhe merr 225.
225+385.690321=x^{2}
Llogarit 19.639 në fuqi të 2 dhe merr 385.690321.
610.690321=x^{2}
Shto 225 dhe 385.690321 për të marrë 610.690321.
x^{2}=610.690321
Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
x=\frac{\sqrt{610690321}}{1000} x=-\frac{\sqrt{610690321}}{1000}
Merr rrënjën katrore në të dyja anët e ekuacionit.
225+19.639^{2}=x^{2}
Llogarit 15 në fuqi të 2 dhe merr 225.
225+385.690321=x^{2}
Llogarit 19.639 në fuqi të 2 dhe merr 385.690321.
610.690321=x^{2}
Shto 225 dhe 385.690321 për të marrë 610.690321.
x^{2}=610.690321
Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
x^{2}-610.690321=0
Zbrit 610.690321 nga të dyja anët.
x=\frac{0±\sqrt{0^{2}-4\left(-610.690321\right)}}{2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 1, b me 0 dhe c me -610.690321 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-610.690321\right)}}{2}
Ngri në fuqi të dytë 0.
x=\frac{0±\sqrt{2442.761284}}{2}
Shumëzo -4 herë -610.690321.
x=\frac{0±\frac{\sqrt{610690321}}{500}}{2}
Gjej rrënjën katrore të 2442.761284.
x=\frac{\sqrt{610690321}}{1000}
Tani zgjidhe ekuacionin x=\frac{0±\frac{\sqrt{610690321}}{500}}{2} kur ± është plus.
x=-\frac{\sqrt{610690321}}{1000}
Tani zgjidhe ekuacionin x=\frac{0±\frac{\sqrt{610690321}}{500}}{2} kur ± është minus.
x=\frac{\sqrt{610690321}}{1000} x=-\frac{\sqrt{610690321}}{1000}
Ekuacioni është zgjidhur tani.