Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

2x+3y=-9,x-y=3
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
2x+3y=-9
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
2x=-3y-9
Zbrit 3y nga të dyja anët e ekuacionit.
x=\frac{1}{2}\left(-3y-9\right)
Pjesëto të dyja anët me 2.
x=-\frac{3}{2}y-\frac{9}{2}
Shumëzo \frac{1}{2} herë -3y-9.
-\frac{3}{2}y-\frac{9}{2}-y=3
Zëvendëso x me \frac{-3y-9}{2} në ekuacionin tjetër, x-y=3.
-\frac{5}{2}y-\frac{9}{2}=3
Mblidh -\frac{3y}{2} me -y.
-\frac{5}{2}y=\frac{15}{2}
Mblidh \frac{9}{2} në të dyja anët e ekuacionit.
y=-3
Pjesëto të dyja anët e ekuacionit me -\frac{5}{2}, që është njëlloj sikur t'i shumëzosh të dyja anët me të anasjelltën e thyesës.
x=-\frac{3}{2}\left(-3\right)-\frac{9}{2}
Zëvendëso y me -3 në x=-\frac{3}{2}y-\frac{9}{2}. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=\frac{9-9}{2}
Shumëzo -\frac{3}{2} herë -3.
x=0
Mblidh -\frac{9}{2} me \frac{9}{2} duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
x=0,y=-3
Sistemi është zgjidhur tani.
2x+3y=-9,x-y=3
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}2&3\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\3\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}2&3\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}-9\\3\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}2&3\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}-9\\3\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}-9\\3\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-3}&-\frac{3}{2\left(-1\right)-3}\\-\frac{1}{2\left(-1\right)-3}&\frac{2}{2\left(-1\right)-3}\end{matrix}\right)\left(\begin{matrix}-9\\3\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-9\\3\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-9\right)+\frac{3}{5}\times 3\\\frac{1}{5}\left(-9\right)-\frac{2}{5}\times 3\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
Bëj veprimet.
x=0,y=-3
Nxirr elementet e matricës x dhe y.
2x+3y=-9,x-y=3
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
2x+3y=-9,2x+2\left(-1\right)y=2\times 3
Për ta bërë 2x të barabartë me x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me 1 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 2.
2x+3y=-9,2x-2y=6
Thjeshto.
2x-2x+3y+2y=-9-6
Zbrit 2x-2y=6 nga 2x+3y=-9 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
3y+2y=-9-6
Mblidh 2x me -2x. Shprehjet 2x dhe -2x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
5y=-9-6
Mblidh 3y me 2y.
5y=-15
Mblidh -9 me -6.
y=-3
Pjesëto të dyja anët me 5.
x-\left(-3\right)=3
Zëvendëso y me -3 në x-y=3. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=0
Zbrit 3 nga të dyja anët e ekuacionit.
x=0,y=-3
Sistemi është zgjidhur tani.