Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Gjej x, y (complex solution)
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

y=mx-2m+\sqrt{2}
Merr parasysh ekuacionin e dytë. Përdor vetinë e shpërndarjes për të shumëzuar m me x-2.
x^{2}+2\left(mx-2m+\sqrt{2}\right)^{2}=8
Zëvendëso y me mx-2m+\sqrt{2} në ekuacionin tjetër, x^{2}+2y^{2}=8.
x^{2}+2\left(m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}\right)=8
Ngri në fuqi të dytë mx-2m+\sqrt{2}.
x^{2}+2m^{2}x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
Shumëzo 2 herë m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}.
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
Mblidh x^{2} me 2m^{2}x^{2}.
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}-8=0
Zbrit 8 nga të dyja anët e ekuacionit.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{\left(4m\left(-2m+\sqrt{2}\right)\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 1+2m^{2}, b me 2\times 2m\left(-2m+\sqrt{2}\right) dhe c me -4+8m^{2}-8m\sqrt{2} në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
Ngri në fuqi të dytë 2\times 2m\left(-2m+\sqrt{2}\right).
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}+\left(-8m^{2}-4\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
Shumëzo -4 herë 1+2m^{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-64m^{4}+64\sqrt{2}m^{3}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
Shumëzo -4-8m^{2} herë -4+8m^{2}-8m\sqrt{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{32m^{2}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
Mblidh 16m^{2}\left(-2m+\sqrt{2}\right)^{2} me 16+32m\sqrt{2}-64m^{4}+64m^{3}\sqrt{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{2\left(2m^{2}+1\right)}
Gjej rrënjën katrore të 16+32m^{2}+32m\sqrt{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
Shumëzo 2 herë 1+2m^{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)+4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
Tani zgjidhe ekuacionin x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} kur ± është plus. Mblidh -4m\left(-2m+\sqrt{2}\right) me 4\sqrt{1+2m^{2}+2m\sqrt{2}}.
x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
Pjesëto -4m\left(-2m+\sqrt{2}\right)+4\sqrt{1+2m^{2}+2m\sqrt{2}} me 2+4m^{2}.
x=\frac{8m^{2}-4\sqrt{2m^{2}+2\sqrt{2}m+1}-4\sqrt{2}m}{4m^{2}+2}
Tani zgjidhe ekuacionin x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} kur ± është minus. Zbrit 4\sqrt{1+2m^{2}+2m\sqrt{2}} nga -4m\left(-2m+\sqrt{2}\right).
x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
Pjesëto 8m^{2}-4m\sqrt{2}-4\sqrt{1+2m^{2}+2m\sqrt{2}} me 2+4m^{2}.
y=m\times \frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
Ekzistojnë dy zgjidhje për x: \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} dhe \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}. Zëvendëso x me \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} në ekuacionin y=mx-2m+\sqrt{2} për të gjetur zgjidhjen përkatëse për y që vërteton të dyja ekuacionet.
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
Shumëzo m herë \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}.
y=m\times \frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
Tani zëvendëso x me \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} në ekuacionin y=mx-2m+\sqrt{2} dhe zgjidhe për të gjetur zgjidhjen përkatëse për y që vërteton të dyja ekuacionet.
y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
Shumëzo m herë \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}.
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{ or }y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
Sistemi është zgjidhur tani.