Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

2x+y=5,-x+5y=3
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
2x+y=5
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
2x=-y+5
Zbrit y nga të dyja anët e ekuacionit.
x=\frac{1}{2}\left(-y+5\right)
Pjesëto të dyja anët me 2.
x=-\frac{1}{2}y+\frac{5}{2}
Shumëzo \frac{1}{2} herë -y+5.
-\left(-\frac{1}{2}y+\frac{5}{2}\right)+5y=3
Zëvendëso x me \frac{-y+5}{2} në ekuacionin tjetër, -x+5y=3.
\frac{1}{2}y-\frac{5}{2}+5y=3
Shumëzo -1 herë \frac{-y+5}{2}.
\frac{11}{2}y-\frac{5}{2}=3
Mblidh \frac{y}{2} me 5y.
\frac{11}{2}y=\frac{11}{2}
Mblidh \frac{5}{2} në të dyja anët e ekuacionit.
y=1
Pjesëto të dyja anët e ekuacionit me \frac{11}{2}, që është njëlloj sikur t'i shumëzosh të dyja anët me të anasjelltën e thyesës.
x=\frac{-1+5}{2}
Zëvendëso y me 1 në x=-\frac{1}{2}y+\frac{5}{2}. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=2
Mblidh \frac{5}{2} me -\frac{1}{2} duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
x=2,y=1
Sistemi është zgjidhur tani.
2x+y=5,-x+5y=3
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}2&1\\-1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-1\right)}&-\frac{1}{2\times 5-\left(-1\right)}\\-\frac{-1}{2\times 5-\left(-1\right)}&\frac{2}{2\times 5-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&-\frac{1}{11}\\\frac{1}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}\times 5-\frac{1}{11}\times 3\\\frac{1}{11}\times 5+\frac{2}{11}\times 3\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Bëj veprimet.
x=2,y=1
Nxirr elementet e matricës x dhe y.
2x+y=5,-x+5y=3
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
-2x-y=-5,2\left(-1\right)x+2\times 5y=2\times 3
Për ta bërë 2x të barabartë me -x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me -1 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 2.
-2x-y=-5,-2x+10y=6
Thjeshto.
-2x+2x-y-10y=-5-6
Zbrit -2x+10y=6 nga -2x-y=-5 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
-y-10y=-5-6
Mblidh -2x me 2x. Shprehjet -2x dhe 2x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
-11y=-5-6
Mblidh -y me -10y.
-11y=-11
Mblidh -5 me -6.
y=1
Pjesëto të dyja anët me -11.
-x+5=3
Zëvendëso y me 1 në -x+5y=3. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
-x=-2
Zbrit 5 nga të dyja anët e ekuacionit.
x=2
Pjesëto të dyja anët me -1.
x=2,y=1
Sistemi është zgjidhur tani.