\left\{ \begin{array} { l } { \frac { 1 } { a ^ { 2 } } + \frac { 1 } { b ^ { 2 } } = 1 } \\ { \frac { a } { 4 x ^ { 2 } } + \frac { 21 } { 36 a ^ { 2 } } = 1 } \end{array} \right.
Gjej x (complex solution)
x=-\sqrt{3}i\left(7-12a^{2}\right)^{-\frac{1}{2}}a^{\frac{3}{2}}
x=\sqrt{3}i\left(7-12a^{2}\right)^{-\frac{1}{2}}a^{\frac{3}{2}}\text{, }b\neq \frac{\sqrt{35}i}{5}\text{ and }b\neq -\frac{\sqrt{35}i}{5}\text{ and }\left(a=i\left(1-b^{2}\right)^{-\frac{1}{2}}b\text{ or }a=-i\left(1-b^{2}\right)^{-\frac{1}{2}}b\right)\text{ and }b\neq 1\text{ and }b\neq -1\text{ and }b\neq 0
Gjej x
x=\sqrt{-\frac{3a^{3}}{7-12a^{2}}}
x=-\sqrt{-\frac{3a^{3}}{7-12a^{2}}}\text{, }\left(\sqrt{-\frac{1}{1-b^{2}}}b>-\frac{\sqrt{21}}{6}\text{ and }a=\sqrt{-\frac{1}{1-b^{2}}}b\text{ and }b<-1\right)\text{ or }\left(\sqrt{-\frac{1}{1-b^{2}}}b<\frac{\sqrt{21}}{6}\text{ and }a=-\sqrt{-\frac{1}{1-b^{2}}}b\text{ and }b>1\right)\text{ or }\left(a=-\sqrt{-\frac{1}{1-b^{2}}}b\text{ and }\sqrt{-\frac{1}{1-b^{2}}}b<-\frac{\sqrt{21}}{6}\text{ and }b<-1\right)\text{ or }\left(a=\sqrt{-\frac{1}{1-b^{2}}}b\text{ and }\sqrt{-\frac{1}{1-b^{2}}}b>\frac{\sqrt{21}}{6}\text{ and }b>1\right)
Share
Kopjuar në clipboard
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}