Rešitev za x
x=-6
x=3
Graf
Delež
Kopirano v odložišče
x^{2}+4x-\left(x-2\right)=20
Uporabite distributivnost, da pomnožite x s/z x+4.
x^{2}+4x-x-\left(-2\right)=20
Če želite poiskati nasprotno vrednost za x-2, poiščite nasprotno vrednost vsakega izraza.
x^{2}+4x-x+2=20
Nasprotna vrednost -2 je 2.
x^{2}+3x+2=20
Združite 4x in -x, da dobite 3x.
x^{2}+3x+2-20=0
Odštejte 20 na obeh straneh.
x^{2}+3x-18=0
Odštejte 20 od 2, da dobite -18.
x=\frac{-3±\sqrt{3^{2}-4\left(-18\right)}}{2}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 1 za a, 3 za b in -18 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-18\right)}}{2}
Kvadrat števila 3.
x=\frac{-3±\sqrt{9+72}}{2}
Pomnožite -4 s/z -18.
x=\frac{-3±\sqrt{81}}{2}
Seštejte 9 in 72.
x=\frac{-3±9}{2}
Uporabite kvadratni koren števila 81.
x=\frac{6}{2}
Zdaj rešite enačbo x=\frac{-3±9}{2}, ko je ± plus. Seštejte -3 in 9.
x=3
Delite 6 s/z 2.
x=-\frac{12}{2}
Zdaj rešite enačbo x=\frac{-3±9}{2}, ko je ± minus. Odštejte 9 od -3.
x=-6
Delite -12 s/z 2.
x=3 x=-6
Enačba je zdaj rešena.
x^{2}+4x-\left(x-2\right)=20
Uporabite distributivnost, da pomnožite x s/z x+4.
x^{2}+4x-x-\left(-2\right)=20
Če želite poiskati nasprotno vrednost za x-2, poiščite nasprotno vrednost vsakega izraza.
x^{2}+4x-x+2=20
Nasprotna vrednost -2 je 2.
x^{2}+3x+2=20
Združite 4x in -x, da dobite 3x.
x^{2}+3x=20-2
Odštejte 2 na obeh straneh.
x^{2}+3x=18
Odštejte 2 od 20, da dobite 18.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=18+\left(\frac{3}{2}\right)^{2}
Delite 3, ki je koeficient člena x, z 2, da dobite \frac{3}{2}. Nato dodajte kvadrat števila \frac{3}{2} na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
x^{2}+3x+\frac{9}{4}=18+\frac{9}{4}
Kvadrirajte ulomek \frac{3}{2} tako, da kvadrirate števec in imenovalec ulomka.
x^{2}+3x+\frac{9}{4}=\frac{81}{4}
Seštejte 18 in \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{81}{4}
Faktorizirajte x^{2}+3x+\frac{9}{4}. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Uporabite kvadratni koren obeh strani enačbe.
x+\frac{3}{2}=\frac{9}{2} x+\frac{3}{2}=-\frac{9}{2}
Poenostavite.
x=3 x=-6
Odštejte \frac{3}{2} na obeh straneh enačbe.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}