Faktoriziraj
\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x^{2}-3x+9\right)
Ovrednoti
x^{5}-x^{3}+27x^{2}-27
Graf
Delež
Kopirano v odložišče
x^{3}\left(x^{2}-1\right)+27\left(x^{2}-1\right)
Naredi združevanje x^{5}-x^{3}+27x^{2}-27=\left(x^{5}-x^{3}\right)+\left(27x^{2}-27\right) in faktor x^{3} v prvi in 27 v drugi skupini.
\left(x^{2}-1\right)\left(x^{3}+27\right)
Faktor skupnega člena x^{2}-1 z uporabo lastnosti distributivnosti.
\left(x-1\right)\left(x+1\right)
Razmislite o x^{2}-1. Znova zapišite x^{2}-1 kot x^{2}-1^{2}. Razlika kvadratov je mogoče faktorirati s pravilom: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x+3\right)\left(x^{2}-3x+9\right)
Razmislite o x^{3}+27. Znova zapišite x^{3}+27 kot x^{3}+3^{3}. Vsota kock je mogoče faktorirati s pravilom: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x^{2}-3x+9\right)
Znova zapišite celoten faktoriziran izraz. Polinoma x^{2}-3x+9 ni faktorirati, ker nima Množica racionalnih števil korenov.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}