Preskoči na glavno vsebino
Faktoriziraj
Tick mark Image
Ovrednoti
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

a+b=-1 ab=1\left(-6\right)=-6
Faktorizirajte izraz z združevanjem. Najprej je treba izraz znova napisati kot x^{2}+ax+bx-6. Če želite najti a in b, nastavite sistem, ki ga želite rešiti.
1,-6 2,-3
Ker ab je negativen, a in b imajo nasprotne znake. Ker je a+b negativen, ima negativno število večjo absolutno vrednost kot pozitivna. Seznam vseh teh celih parov, ki omogočajo -6 izdelka.
1-6=-5 2-3=-1
Izračunajte vsoto za vsak par.
a=-3 b=2
Rešitev je par, ki daje vsoto -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Znova zapišite x^{2}-x-6 kot \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
Faktoriziranje x v prvi in 2 v drugi skupini.
\left(x-3\right)\left(x+2\right)
Faktoriziranje skupnega člena x-3 z uporabo lastnosti odklona.
x^{2}-x-6=0
Kvadratni polinom je mogoče faktorizirati s transformacijo ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kjer sta x_{1} in x_{2} rešitvi kvadratne enačbe ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
Pomnožite -4 s/z -6.
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
Seštejte 1 in 24.
x=\frac{-\left(-1\right)±5}{2}
Uporabite kvadratni koren števila 25.
x=\frac{1±5}{2}
Nasprotna vrednost vrednosti -1 je 1.
x=\frac{6}{2}
Zdaj rešite enačbo x=\frac{1±5}{2}, ko je ± plus. Seštejte 1 in 5.
x=3
Delite 6 s/z 2.
x=-\frac{4}{2}
Zdaj rešite enačbo x=\frac{1±5}{2}, ko je ± minus. Odštejte 5 od 1.
x=-2
Delite -4 s/z 2.
x^{2}-x-6=\left(x-3\right)\left(x-\left(-2\right)\right)
Faktorizirajte izvirni izraz tako, da uporabite ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamenjajte vrednost 3 z vrednostjo x_{1}, vrednost -2 pa z vrednostjo x_{2}.
x^{2}-x-6=\left(x-3\right)\left(x+2\right)
Poenostavite vse izraze obrazca p-\left(-q\right) na p+q.