Preskoči na glavno vsebino
Rešitev za x
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

a+b=12 ab=27
Če želite rešiti enačbo, faktor x^{2}+12x+27 s formulo x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
1,27 3,9
Ker je ab pozitivno, a in b imeti enak znak. Ker je a+b pozitivno, a in b sta pozitivna. Navedite vse takšne pare celega števila, ki nudijo 27 izdelka.
1+27=28 3+9=12
Izračunajte vsoto za vsak par.
a=3 b=9
Rešitev je par, ki zagotavlja vsoto 12.
\left(x+3\right)\left(x+9\right)
Faktorirati izraz za znova napišite \left(x+a\right)\left(x+b\right) z pridobljene vrednosti.
x=-3 x=-9
Če želite poiskati rešitve za enačbe, rešite x+3=0 in x+9=0.
a+b=12 ab=1\times 27=27
Če želite rešiti enačbo, faktor levo roko po združiti. Najprej, na levi strani mora biti uporabnika kot x^{2}+ax+bx+27. Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
1,27 3,9
Ker je ab pozitivno, a in b imeti enak znak. Ker je a+b pozitivno, a in b sta pozitivna. Navedite vse takšne pare celega števila, ki nudijo 27 izdelka.
1+27=28 3+9=12
Izračunajte vsoto za vsak par.
a=3 b=9
Rešitev je par, ki zagotavlja vsoto 12.
\left(x^{2}+3x\right)+\left(9x+27\right)
Znova zapišite x^{2}+12x+27 kot \left(x^{2}+3x\right)+\left(9x+27\right).
x\left(x+3\right)+9\left(x+3\right)
Faktor x v prvem in 9 v drugi skupini.
\left(x+3\right)\left(x+9\right)
Faktor skupnega člena x+3 z uporabo lastnosti distributivnosti.
x=-3 x=-9
Če želite poiskati rešitve za enačbe, rešite x+3=0 in x+9=0.
x^{2}+12x+27=0
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-12±\sqrt{12^{2}-4\times 27}}{2}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 1 za a, 12 za b in 27 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 27}}{2}
Kvadrat števila 12.
x=\frac{-12±\sqrt{144-108}}{2}
Pomnožite -4 s/z 27.
x=\frac{-12±\sqrt{36}}{2}
Seštejte 144 in -108.
x=\frac{-12±6}{2}
Uporabite kvadratni koren števila 36.
x=-\frac{6}{2}
Zdaj rešite enačbo x=\frac{-12±6}{2}, ko je ± plus. Seštejte -12 in 6.
x=-3
Delite -6 s/z 2.
x=-\frac{18}{2}
Zdaj rešite enačbo x=\frac{-12±6}{2}, ko je ± minus. Odštejte 6 od -12.
x=-9
Delite -18 s/z 2.
x=-3 x=-9
Enačba je zdaj rešena.
x^{2}+12x+27=0
Kvadratne enačbe, kot je ta, lahko rešite z dopolnjevanjem do popolnega kvadrata. Za dopolnjevanje do popolnega kvadrata morate enačbo najprej pretvoriti v obliko x^{2}+bx=c.
x^{2}+12x+27-27=-27
Odštejte 27 na obeh straneh enačbe.
x^{2}+12x=-27
Če število 27 odštejete od enakega števila, dobite 0.
x^{2}+12x+6^{2}=-27+6^{2}
Delite 12, ki je koeficient člena x, z 2, da dobite 6. Nato dodajte kvadrat števila 6 na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
x^{2}+12x+36=-27+36
Kvadrat števila 6.
x^{2}+12x+36=9
Seštejte -27 in 36.
\left(x+6\right)^{2}=9
Faktorizirajte x^{2}+12x+36. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{9}
Uporabite kvadratni koren obeh strani enačbe.
x+6=3 x+6=-3
Poenostavite.
x=-3 x=-9
Odštejte 6 na obeh straneh enačbe.