Rešitev za v
v=\tan(e^{x})
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\ln(\pi n_{1}+\frac{\pi }{2})
Rešitev za x
\left\{\begin{matrix}x=\ln(2\pi n_{2}+\arcsin(\frac{v}{\sqrt{v^{2}+1}})+\pi )\text{, }n_{2}\in \mathrm{Z}\text{, }\exists n_{4}\in \mathrm{Z}\text{ : }\left(n_{4}\text{bmod}2=0\text{ and }n_{2}\geq \frac{n_{4}}{2}-\frac{1}{2}\text{ and }n_{2}\leq \frac{n_{4}}{2}+\frac{1}{2}\right)\text{ and }n_{2}\geq 0\text{, }&n_{1}\geq 0\\x=\ln(2\pi n_{3}+\arcsin(\frac{v}{\sqrt{v^{2}+1}}))\text{, }n_{3}\in \mathrm{Z}\text{, }\left(n_{3}\geq 1\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(n_{4}\text{bmod}2=1\text{ and }n_{3}\geq \frac{n_{4}}{2}\text{ and }n_{3}\leq \frac{n_{4}}{2}+1\right)\right)\text{ or }\left(v>0\text{ and }n_{3}\geq 0\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(n_{4}\text{bmod}2=1\text{ and }n_{3}\geq \frac{n_{4}}{2}\text{ and }n_{3}\leq \frac{n_{4}}{2}+1\right)\right)\text{, }&n_{2}\geq 0\text{ and }n_{1}\geq 0\end{matrix}\right,
Graf
Delež
Kopirano v odložišče
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}