Faktoriziraj
\left(n-\frac{-\sqrt{65}-9}{2}\right)\left(n-\frac{\sqrt{65}-9}{2}\right)
Ovrednoti
n^{2}+9n+4
Delež
Kopirano v odložišče
n^{2}+9n+4=0
Kvadratni polinom je mogoče faktorizirati s transformacijo ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kjer sta x_{1} in x_{2} rešitvi kvadratne enačbe ax^{2}+bx+c=0.
n=\frac{-9±\sqrt{9^{2}-4\times 4}}{2}
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
n=\frac{-9±\sqrt{81-4\times 4}}{2}
Kvadrat števila 9.
n=\frac{-9±\sqrt{81-16}}{2}
Pomnožite -4 s/z 4.
n=\frac{-9±\sqrt{65}}{2}
Seštejte 81 in -16.
n=\frac{\sqrt{65}-9}{2}
Zdaj rešite enačbo n=\frac{-9±\sqrt{65}}{2}, ko je ± plus. Seštejte -9 in \sqrt{65}.
n=\frac{-\sqrt{65}-9}{2}
Zdaj rešite enačbo n=\frac{-9±\sqrt{65}}{2}, ko je ± minus. Odštejte \sqrt{65} od -9.
n^{2}+9n+4=\left(n-\frac{\sqrt{65}-9}{2}\right)\left(n-\frac{-\sqrt{65}-9}{2}\right)
Faktorizirajte izvirni izraz tako, da uporabite ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamenjajte vrednost \frac{-9+\sqrt{65}}{2} z vrednostjo x_{1}, vrednost \frac{-9-\sqrt{65}}{2} pa z vrednostjo x_{2}.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}