Faktoriziraj
\left(x-4\right)\left(x+3\right)
Ovrednoti
\left(x-4\right)\left(x+3\right)
Graf
Delež
Kopirano v odložišče
a+b=-1 ab=1\left(-12\right)=-12
Faktorizirajte izraz z združevanjem. Najprej je treba izraz znova napisati kot x^{2}+ax+bx-12. Če želite najti a in b, nastavite sistem, ki ga želite rešiti.
1,-12 2,-6 3,-4
Ker ab je negativen, a in b imajo nasprotne znake. Ker je a+b negativen, ima negativno število večjo absolutno vrednost kot pozitivna. Seznam vseh teh celih parov, ki omogočajo -12 izdelka.
1-12=-11 2-6=-4 3-4=-1
Izračunajte vsoto za vsak par.
a=-4 b=3
Rešitev je par, ki daje vsoto -1.
\left(x^{2}-4x\right)+\left(3x-12\right)
Znova zapišite x^{2}-x-12 kot \left(x^{2}-4x\right)+\left(3x-12\right).
x\left(x-4\right)+3\left(x-4\right)
Faktoriziranje x v prvi in 3 v drugi skupini.
\left(x-4\right)\left(x+3\right)
Faktoriziranje skupnega člena x-4 z uporabo lastnosti odklona.
x^{2}-x-12=0
Kvadratni polinom je mogoče faktorizirati s transformacijo ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kjer sta x_{1} in x_{2} rešitvi kvadratne enačbe ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-12\right)}}{2}
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2}
Pomnožite -4 s/z -12.
x=\frac{-\left(-1\right)±\sqrt{49}}{2}
Seštejte 1 in 48.
x=\frac{-\left(-1\right)±7}{2}
Uporabite kvadratni koren števila 49.
x=\frac{1±7}{2}
Nasprotna vrednost vrednosti -1 je 1.
x=\frac{8}{2}
Zdaj rešite enačbo x=\frac{1±7}{2}, ko je ± plus. Seštejte 1 in 7.
x=4
Delite 8 s/z 2.
x=-\frac{6}{2}
Zdaj rešite enačbo x=\frac{1±7}{2}, ko je ± minus. Odštejte 7 od 1.
x=-3
Delite -6 s/z 2.
x^{2}-x-12=\left(x-4\right)\left(x-\left(-3\right)\right)
Faktorizirajte izvirni izraz tako, da uporabite ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamenjajte vrednost 4 z vrednostjo x_{1}, vrednost -3 pa z vrednostjo x_{2}.
x^{2}-x-12=\left(x-4\right)\left(x+3\right)
Poenostavite vse izraze obrazca p-\left(-q\right) na p+q.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}