Ovrednoti
-\frac{5x+13}{x+3}
Odvajajte w.r.t. x
-\frac{2}{\left(x+3\right)^{2}}
Graf
Delež
Kopirano v odložišče
\frac{2}{x+3}-\frac{5\left(x+3\right)}{x+3}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite 5 s/z \frac{x+3}{x+3}.
\frac{2-5\left(x+3\right)}{x+3}
Ker \frac{2}{x+3} in \frac{5\left(x+3\right)}{x+3} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{2-5x-15}{x+3}
Izvedi množenje v 2-5\left(x+3\right).
\frac{-13-5x}{x+3}
Združite podobne člene v 2-5x-15.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{x+3}-\frac{5\left(x+3\right)}{x+3})
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite 5 s/z \frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2-5\left(x+3\right)}{x+3})
Ker \frac{2}{x+3} in \frac{5\left(x+3\right)}{x+3} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2-5x-15}{x+3})
Izvedi množenje v 2-5\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-13-5x}{x+3})
Združite podobne člene v 2-5x-15.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}-13)-\left(-5x^{1}-13\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
Za kateri koli dve odvedljivi funkciji je odvod kvocienta dveh funkcij imenovalec krat odvod števca minus števec krat odvod imenovalca, vse skupaj pa je deljeno s kvadratom imenovalca.
\frac{\left(x^{1}+3\right)\left(-5\right)x^{1-1}-\left(-5x^{1}-13\right)x^{1-1}}{\left(x^{1}+3\right)^{2}}
Odvod polinoma je vsota odvodov njegovih členov. Odvod katerega koli prostega člena je 0. Odvod člena ax^{n} je nax^{n-1}.
\frac{\left(x^{1}+3\right)\left(-5\right)x^{0}-\left(-5x^{1}-13\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Izračunajte račun.
\frac{x^{1}\left(-5\right)x^{0}+3\left(-5\right)x^{0}-\left(-5x^{1}x^{0}-13x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Razčlenite z distributivnostjo.
\frac{-5x^{1}+3\left(-5\right)x^{0}-\left(-5x^{1}-13x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Če želite množiti potence iste osnove, seštejte njihove eksponente.
\frac{-5x^{1}-15x^{0}-\left(-5x^{1}-13x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Izračunajte račun.
\frac{-5x^{1}-15x^{0}-\left(-5x^{1}\right)-\left(-13x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Odstranite nepotrebne oklepaje.
\frac{\left(-5-\left(-5\right)\right)x^{1}+\left(-15-\left(-13\right)\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Združite podobne člene.
\frac{-2x^{0}}{\left(x^{1}+3\right)^{2}}
Odštejte -5 od -5 in -13 od -15.
\frac{-2x^{0}}{\left(x+3\right)^{2}}
Za kakršen koli izraz t, t^{1}=t.
\frac{-2}{\left(x+3\right)^{2}}
Za kakršen koli izraz t, razen 0, t^{0}=1.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}