Preskoči na glavno vsebino
Faktoriziraj
Tick mark Image
Ovrednoti
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

6\left(21t-t^{2}\right)
Faktorizirajte 6.
t\left(21-t\right)
Razmislite o 21t-t^{2}. Faktorizirajte t.
6t\left(-t+21\right)
Znova zapišite celoten faktoriziran izraz.
-6t^{2}+126t=0
Kvadratni polinom je mogoče faktorizirati s transformacijo ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kjer sta x_{1} in x_{2} rešitvi kvadratne enačbe ax^{2}+bx+c=0.
t=\frac{-126±\sqrt{126^{2}}}{2\left(-6\right)}
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
t=\frac{-126±126}{2\left(-6\right)}
Uporabite kvadratni koren števila 126^{2}.
t=\frac{-126±126}{-12}
Pomnožite 2 s/z -6.
t=\frac{0}{-12}
Zdaj rešite enačbo t=\frac{-126±126}{-12}, ko je ± plus. Seštejte -126 in 126.
t=0
Delite 0 s/z -12.
t=-\frac{252}{-12}
Zdaj rešite enačbo t=\frac{-126±126}{-12}, ko je ± minus. Odštejte 126 od -126.
t=21
Delite -252 s/z -12.
-6t^{2}+126t=-6t\left(t-21\right)
Faktorizirajte izvirni izraz tako, da uporabite ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamenjajte vrednost 0 z vrednostjo x_{1}, vrednost 21 pa z vrednostjo x_{2}.