Faktoriziraj
\left(2x-5\right)\left(x+3\right)
Ovrednoti
\left(2x-5\right)\left(x+3\right)
Graf
Delež
Kopirano v odložišče
a+b=1 ab=2\left(-15\right)=-30
Faktorizirajte izraz z združevanjem. Najprej je treba izraz znova napisati kot 2x^{2}+ax+bx-15. Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
-1,30 -2,15 -3,10 -5,6
Ker je ab negativen, a in b imajo nenegativno vrednost. Ker je a+b pozitivno, je pozitivno število večje absolutno vrednosti kot negativno. Navedite vse takšne pare celega števila, ki nudijo -30 izdelka.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Izračunajte vsoto za vsak par.
a=-5 b=6
Rešitev je par, ki zagotavlja vsoto 1.
\left(2x^{2}-5x\right)+\left(6x-15\right)
Znova zapišite 2x^{2}+x-15 kot \left(2x^{2}-5x\right)+\left(6x-15\right).
x\left(2x-5\right)+3\left(2x-5\right)
Faktor x v prvem in 3 v drugi skupini.
\left(2x-5\right)\left(x+3\right)
Faktor skupnega člena 2x-5 z uporabo lastnosti distributivnosti.
2x^{2}+x-15=0
Kvadratni polinom je mogoče faktorizirati s transformacijo ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kjer sta x_{1} in x_{2} rešitvi kvadratne enačbe ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-15\right)}}{2\times 2}
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-1±\sqrt{1-4\times 2\left(-15\right)}}{2\times 2}
Kvadrat števila 1.
x=\frac{-1±\sqrt{1-8\left(-15\right)}}{2\times 2}
Pomnožite -4 s/z 2.
x=\frac{-1±\sqrt{1+120}}{2\times 2}
Pomnožite -8 s/z -15.
x=\frac{-1±\sqrt{121}}{2\times 2}
Seštejte 1 in 120.
x=\frac{-1±11}{2\times 2}
Uporabite kvadratni koren števila 121.
x=\frac{-1±11}{4}
Pomnožite 2 s/z 2.
x=\frac{10}{4}
Zdaj rešite enačbo x=\frac{-1±11}{4}, ko je ± plus. Seštejte -1 in 11.
x=\frac{5}{2}
Zmanjšajte ulomek \frac{10}{4} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
x=-\frac{12}{4}
Zdaj rešite enačbo x=\frac{-1±11}{4}, ko je ± minus. Odštejte 11 od -1.
x=-3
Delite -12 s/z 4.
2x^{2}+x-15=2\left(x-\frac{5}{2}\right)\left(x-\left(-3\right)\right)
Faktorizirajte izvirni izraz tako, da uporabite ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamenjajte vrednost \frac{5}{2} z vrednostjo x_{1}, vrednost -3 pa z vrednostjo x_{2}.
2x^{2}+x-15=2\left(x-\frac{5}{2}\right)\left(x+3\right)
Poenostavite vse izraze obrazca p-\left(-q\right) na p+q.
2x^{2}+x-15=2\times \frac{2x-5}{2}\left(x+3\right)
Odštejte x od \frac{5}{2} tako, da poiščete skupni imenovalec in odštejete števce. Nato okrajšajte ulomek na najnižje člene, če je mogoče.
2x^{2}+x-15=\left(2x-5\right)\left(x+3\right)
Okrajšaj največji skupni imenovalec 2 v vrednosti 2 in 2.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}