Rešitev za x_1 (complex solution)
\left\{\begin{matrix}x_{1}=-\frac{\sqrt{x_{2}^{4}+4Ax_{2}}}{2x_{2}}-\frac{x_{2}}{2}\text{; }x_{1}=\frac{\sqrt{x_{2}^{4}+4Ax_{2}}}{2x_{2}}-\frac{x_{2}}{2}\text{, }&x_{2}\neq 0\\x_{1}\in \mathrm{C}\text{, }&x_{2}=0\text{ and }A=0\end{matrix}\right,
Rešitev za A
A=x_{1}x_{2}\left(x_{1}+x_{2}\right)
Rešitev za x_1
\left\{\begin{matrix}x_{1}=-\frac{\sqrt{x_{2}^{4}+4Ax_{2}}}{2x_{2}}-\frac{x_{2}}{2}\text{; }x_{1}=\frac{\sqrt{x_{2}^{4}+4Ax_{2}}}{2x_{2}}-\frac{x_{2}}{2}\text{, }&\left(A\leq -\frac{x_{2}^{3}}{4}\text{ and }x_{2}<0\right)\text{ or }\left(A\geq -\frac{x_{2}^{3}}{4}\text{ and }x_{2}>0\right)\text{ or }\left(x_{2}\neq 0\text{ and }A=-\frac{x_{2}^{3}}{4}\right)\\x_{1}\in \mathrm{R}\text{, }&x_{2}=0\text{ and }A=0\end{matrix}\right,
Kviz
Algebra
5 težave, podobne naslednjim:
A = x _ { 1 } ^ { 2 } x _ { 2 } + x _ { 1 } x _ { 2 } ^ { 2 }
Delež
Kopirano v odložišče
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}