Preskoči na glavno vsebino
Rešitev za r
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

50\times 10^{3}r^{2}=9\times 10^{9}\times 80\times 10^{6}\left(-6\right)\times 10^{-6}
Spremenljivka r ne more biti enaka vrednosti 0, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe s/z r^{2}.
50\times 10^{3}r^{2}=9\times 10^{15}\times 80\left(-6\right)\times 10^{-6}
Če želite pomnožiti potence z isto osnovo, seštejte njihove eksponente. Seštejte 9 in 6, da dobite 15.
50\times 10^{3}r^{2}=9\times 10^{9}\times 80\left(-6\right)
Če želite pomnožiti potence z isto osnovo, seštejte njihove eksponente. Seštejte 15 in -6, da dobite 9.
50\times 1000r^{2}=9\times 10^{9}\times 80\left(-6\right)
Izračunajte potenco 10 števila 3, da dobite 1000.
50000r^{2}=9\times 10^{9}\times 80\left(-6\right)
Pomnožite 50 in 1000, da dobite 50000.
50000r^{2}=9\times 1000000000\times 80\left(-6\right)
Izračunajte potenco 10 števila 9, da dobite 1000000000.
50000r^{2}=9000000000\times 80\left(-6\right)
Pomnožite 9 in 1000000000, da dobite 9000000000.
50000r^{2}=720000000000\left(-6\right)
Pomnožite 9000000000 in 80, da dobite 720000000000.
50000r^{2}=-4320000000000
Pomnožite 720000000000 in -6, da dobite -4320000000000.
r^{2}=\frac{-4320000000000}{50000}
Delite obe strani z vrednostjo 50000.
r^{2}=-86400000
Delite -4320000000000 s/z 50000, da dobite -86400000.
r=2400\sqrt{15}i r=-2400\sqrt{15}i
Enačba je zdaj rešena.
50\times 10^{3}r^{2}=9\times 10^{9}\times 80\times 10^{6}\left(-6\right)\times 10^{-6}
Spremenljivka r ne more biti enaka vrednosti 0, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe s/z r^{2}.
50\times 10^{3}r^{2}=9\times 10^{15}\times 80\left(-6\right)\times 10^{-6}
Če želite pomnožiti potence z isto osnovo, seštejte njihove eksponente. Seštejte 9 in 6, da dobite 15.
50\times 10^{3}r^{2}=9\times 10^{9}\times 80\left(-6\right)
Če želite pomnožiti potence z isto osnovo, seštejte njihove eksponente. Seštejte 15 in -6, da dobite 9.
50\times 1000r^{2}=9\times 10^{9}\times 80\left(-6\right)
Izračunajte potenco 10 števila 3, da dobite 1000.
50000r^{2}=9\times 10^{9}\times 80\left(-6\right)
Pomnožite 50 in 1000, da dobite 50000.
50000r^{2}=9\times 1000000000\times 80\left(-6\right)
Izračunajte potenco 10 števila 9, da dobite 1000000000.
50000r^{2}=9000000000\times 80\left(-6\right)
Pomnožite 9 in 1000000000, da dobite 9000000000.
50000r^{2}=720000000000\left(-6\right)
Pomnožite 9000000000 in 80, da dobite 720000000000.
50000r^{2}=-4320000000000
Pomnožite 720000000000 in -6, da dobite -4320000000000.
50000r^{2}+4320000000000=0
Dodajte 4320000000000 na obe strani.
r=\frac{0±\sqrt{0^{2}-4\times 50000\times 4320000000000}}{2\times 50000}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 50000 za a, 0 za b in 4320000000000 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\times 50000\times 4320000000000}}{2\times 50000}
Kvadrat števila 0.
r=\frac{0±\sqrt{-200000\times 4320000000000}}{2\times 50000}
Pomnožite -4 s/z 50000.
r=\frac{0±\sqrt{-864000000000000000}}{2\times 50000}
Pomnožite -200000 s/z 4320000000000.
r=\frac{0±240000000\sqrt{15}i}{2\times 50000}
Uporabite kvadratni koren števila -864000000000000000.
r=\frac{0±240000000\sqrt{15}i}{100000}
Pomnožite 2 s/z 50000.
r=2400\sqrt{15}i
Zdaj rešite enačbo r=\frac{0±240000000\sqrt{15}i}{100000}, ko je ± plus.
r=-2400\sqrt{15}i
Zdaj rešite enačbo r=\frac{0±240000000\sqrt{15}i}{100000}, ko je ± minus.
r=2400\sqrt{15}i r=-2400\sqrt{15}i
Enačba je zdaj rešena.