5 | [ ( \frac { 1 } { 2 } + \frac { 1 } { 3 } - \frac { 1 } { 4 } ) \cdot ( \frac { 1 } { 2 } - \frac { 1 } { 13 } ) + \frac { 1 } { 4 } : \frac { 1 } { 2 } ]
Ovrednoti
\frac{1165}{312}\approx 3,733974359
Faktoriziraj
\frac{5 \cdot 233}{2 ^ {3} \cdot 3 \cdot 13} = 3\frac{229}{312} = 3,733974358974359
Delež
Kopirano v odložišče
5|\left(\frac{3}{6}+\frac{2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
Najmanjši skupni mnogokratnik 2 in 3 je 6. Pretvorite \frac{1}{2} in \frac{1}{3} v ulomke z imenovalcem 6.
5|\left(\frac{3+2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
\frac{3}{6} in \frac{2}{6} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
5|\left(\frac{5}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
Seštejte 3 in 2, da dobite 5.
5|\left(\frac{10}{12}-\frac{3}{12}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
Najmanjši skupni mnogokratnik 6 in 4 je 12. Pretvorite \frac{5}{6} in \frac{1}{4} v ulomke z imenovalcem 12.
5|\frac{10-3}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
Ker \frac{10}{12} in \frac{3}{12} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
5|\frac{7}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
Odštejte 3 od 10, da dobite 7.
5|\frac{7}{12}\left(\frac{13}{26}-\frac{2}{26}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
Najmanjši skupni mnogokratnik 2 in 13 je 26. Pretvorite \frac{1}{2} in \frac{1}{13} v ulomke z imenovalcem 26.
5|\frac{7}{12}\times \frac{13-2}{26}+\frac{\frac{1}{4}}{\frac{1}{2}}|
Ker \frac{13}{26} in \frac{2}{26} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
5|\frac{7}{12}\times \frac{11}{26}+\frac{\frac{1}{4}}{\frac{1}{2}}|
Odštejte 2 od 13, da dobite 11.
5|\frac{7\times 11}{12\times 26}+\frac{\frac{1}{4}}{\frac{1}{2}}|
Pomnožite \frac{7}{12} s/z \frac{11}{26} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
5|\frac{77}{312}+\frac{\frac{1}{4}}{\frac{1}{2}}|
Izvedite množenja v ulomku \frac{7\times 11}{12\times 26}.
5|\frac{77}{312}+\frac{1}{4}\times 2|
Delite \frac{1}{4} s/z \frac{1}{2} tako, da pomnožite \frac{1}{4} z obratno vrednostjo \frac{1}{2}.
5|\frac{77}{312}+\frac{2}{4}|
Pomnožite \frac{1}{4} in 2, da dobite \frac{2}{4}.
5|\frac{77}{312}+\frac{1}{2}|
Zmanjšajte ulomek \frac{2}{4} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
5|\frac{77}{312}+\frac{156}{312}|
Najmanjši skupni mnogokratnik 312 in 2 je 312. Pretvorite \frac{77}{312} in \frac{1}{2} v ulomke z imenovalcem 312.
5|\frac{77+156}{312}|
\frac{77}{312} in \frac{156}{312} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
5|\frac{233}{312}|
Seštejte 77 in 156, da dobite 233.
5\times \frac{233}{312}
Absolutna vrednost realnega števila a je a, ko je a\geq 0, ali -a, ko je a<0. Absolutna vrednost števila \frac{233}{312} je \frac{233}{312}.
\frac{5\times 233}{312}
Izrazite 5\times \frac{233}{312} kot enojni ulomek.
\frac{1165}{312}
Pomnožite 5 in 233, da dobite 1165.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}