Preskoči na glavno vsebino
Rešitev za y
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

3y^{2}=9
Dodajte 9 na obe strani. Katero koli število, ki mu prištejete nič, ostane enako.
y^{2}=\frac{9}{3}
Delite obe strani z vrednostjo 3.
y^{2}=3
Delite 9 s/z 3, da dobite 3.
y=\sqrt{3} y=-\sqrt{3}
Uporabite kvadratni koren obeh strani enačbe.
3y^{2}-9=0
Kvadratne enačbe, kot je ta, s členom x^{2}, vendar brez člena x, lahko še vedno rešite s formulo za reševanje kvadratnih enačb (\frac{-b±\sqrt{b^{2}-4ac}}{2a}), ko jih pretvorite v standardno obliko: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 3\left(-9\right)}}{2\times 3}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 3 za a, 0 za b in -9 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 3\left(-9\right)}}{2\times 3}
Kvadrat števila 0.
y=\frac{0±\sqrt{-12\left(-9\right)}}{2\times 3}
Pomnožite -4 s/z 3.
y=\frac{0±\sqrt{108}}{2\times 3}
Pomnožite -12 s/z -9.
y=\frac{0±6\sqrt{3}}{2\times 3}
Uporabite kvadratni koren števila 108.
y=\frac{0±6\sqrt{3}}{6}
Pomnožite 2 s/z 3.
y=\sqrt{3}
Zdaj rešite enačbo y=\frac{0±6\sqrt{3}}{6}, ko je ± plus.
y=-\sqrt{3}
Zdaj rešite enačbo y=\frac{0±6\sqrt{3}}{6}, ko je ± minus.
y=\sqrt{3} y=-\sqrt{3}
Enačba je zdaj rešena.