Rešitev za x
x = -\frac{4}{3} = -1\frac{1}{3} \approx -1,333333333
x=-2
Graf
Delež
Kopirano v odložišče
a+b=10 ab=3\times 8=24
Če želite rešiti enačbo, faktor levo roko po združiti. Najprej, na levi strani mora biti uporabnika kot 3x^{2}+ax+bx+8. Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
1,24 2,12 3,8 4,6
Ker je ab pozitivno, a in b imeti enak znak. Ker je a+b pozitivno, a in b sta pozitivna. Navedite vse takšne pare celega števila, ki nudijo 24 izdelka.
1+24=25 2+12=14 3+8=11 4+6=10
Izračunajte vsoto za vsak par.
a=4 b=6
Rešitev je par, ki zagotavlja vsoto 10.
\left(3x^{2}+4x\right)+\left(6x+8\right)
Znova zapišite 3x^{2}+10x+8 kot \left(3x^{2}+4x\right)+\left(6x+8\right).
x\left(3x+4\right)+2\left(3x+4\right)
Faktor x v prvem in 2 v drugi skupini.
\left(3x+4\right)\left(x+2\right)
Faktor skupnega člena 3x+4 z uporabo lastnosti distributivnosti.
x=-\frac{4}{3} x=-2
Če želite poiskati rešitve za enačbe, rešite 3x+4=0 in x+2=0.
3x^{2}+10x+8=0
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-10±\sqrt{10^{2}-4\times 3\times 8}}{2\times 3}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 3 za a, 10 za b in 8 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 3\times 8}}{2\times 3}
Kvadrat števila 10.
x=\frac{-10±\sqrt{100-12\times 8}}{2\times 3}
Pomnožite -4 s/z 3.
x=\frac{-10±\sqrt{100-96}}{2\times 3}
Pomnožite -12 s/z 8.
x=\frac{-10±\sqrt{4}}{2\times 3}
Seštejte 100 in -96.
x=\frac{-10±2}{2\times 3}
Uporabite kvadratni koren števila 4.
x=\frac{-10±2}{6}
Pomnožite 2 s/z 3.
x=-\frac{8}{6}
Zdaj rešite enačbo x=\frac{-10±2}{6}, ko je ± plus. Seštejte -10 in 2.
x=-\frac{4}{3}
Zmanjšajte ulomek \frac{-8}{6} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
x=-\frac{12}{6}
Zdaj rešite enačbo x=\frac{-10±2}{6}, ko je ± minus. Odštejte 2 od -10.
x=-2
Delite -12 s/z 6.
x=-\frac{4}{3} x=-2
Enačba je zdaj rešena.
3x^{2}+10x+8=0
Kvadratne enačbe, kot je ta, lahko rešite z dopolnjevanjem do popolnega kvadrata. Za dopolnjevanje do popolnega kvadrata morate enačbo najprej pretvoriti v obliko x^{2}+bx=c.
3x^{2}+10x+8-8=-8
Odštejte 8 na obeh straneh enačbe.
3x^{2}+10x=-8
Če število 8 odštejete od enakega števila, dobite 0.
\frac{3x^{2}+10x}{3}=-\frac{8}{3}
Delite obe strani z vrednostjo 3.
x^{2}+\frac{10}{3}x=-\frac{8}{3}
Z deljenjem s/z 3 razveljavite množenje s/z 3.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=-\frac{8}{3}+\left(\frac{5}{3}\right)^{2}
Delite \frac{10}{3}, ki je koeficient člena x, z 2, da dobite \frac{5}{3}. Nato dodajte kvadrat števila \frac{5}{3} na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
x^{2}+\frac{10}{3}x+\frac{25}{9}=-\frac{8}{3}+\frac{25}{9}
Kvadrirajte ulomek \frac{5}{3} tako, da kvadrirate števec in imenovalec ulomka.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{1}{9}
Seštejte -\frac{8}{3} in \frac{25}{9} tako, da poiščete skupni imenovalec in seštejete števce. Nato okrajšajte ulomek do najnižjih možnih členov.
\left(x+\frac{5}{3}\right)^{2}=\frac{1}{9}
Faktorizirajte x^{2}+\frac{10}{3}x+\frac{25}{9}. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Uporabite kvadratni koren obeh strani enačbe.
x+\frac{5}{3}=\frac{1}{3} x+\frac{5}{3}=-\frac{1}{3}
Poenostavite.
x=-\frac{4}{3} x=-2
Odštejte \frac{5}{3} na obeh straneh enačbe.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}