Faktoriziraj
3mn\left(m-10\right)\left(m+6\right)
Ovrednoti
3mn\left(m-10\right)\left(m+6\right)
Delež
Kopirano v odložišče
3\left(m^{3}n-4m^{2}n-60mn\right)
Faktorizirajte 3.
mn\left(m^{2}-4m-60\right)
Razmislite o m^{3}n-4m^{2}n-60mn. Faktorizirajte mn.
a+b=-4 ab=1\left(-60\right)=-60
Razmislite o m^{2}-4m-60. Faktorizirajte izraz z združevanjem. Najprej je treba izraz znova napisati kot m^{2}+am+bm-60. Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Ker je ab negativen, a in b imajo nenegativno vrednost. a+b je negativno, negativna številka pa je večja absolutna vrednost kot pozitivna. Navedite vse takšne pare celega števila, ki nudijo -60 izdelka.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Izračunajte vsoto za vsak par.
a=-10 b=6
Rešitev je par, ki zagotavlja vsoto -4.
\left(m^{2}-10m\right)+\left(6m-60\right)
Znova zapišite m^{2}-4m-60 kot \left(m^{2}-10m\right)+\left(6m-60\right).
m\left(m-10\right)+6\left(m-10\right)
Faktor m v prvem in 6 v drugi skupini.
\left(m-10\right)\left(m+6\right)
Faktor skupnega člena m-10 z uporabo lastnosti distributivnosti.
3mn\left(m-10\right)\left(m+6\right)
Znova zapišite celoten faktoriziran izraz.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}