Rešitev za x
x=2
x=-6
Graf
Delež
Kopirano v odložišče
\left(x+2\right)^{2}=\frac{48}{3}
Delite obe strani z vrednostjo 3.
\left(x+2\right)^{2}=16
Delite 48 s/z 3, da dobite 16.
x^{2}+4x+4=16
Uporabite binomski izrek \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, da razširite \left(x+2\right)^{2}.
x^{2}+4x+4-16=0
Odštejte 16 na obeh straneh.
x^{2}+4x-12=0
Odštejte 16 od 4, da dobite -12.
a+b=4 ab=-12
Če želite rešiti enačbo, faktor x^{2}+4x-12 s formulo x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
-1,12 -2,6 -3,4
Ker je ab negativen, a in b imajo nenegativno vrednost. Ker je a+b pozitivno, je pozitivno število večje absolutno vrednosti kot negativno. Navedite vse takšne pare celega števila, ki nudijo -12 izdelka.
-1+12=11 -2+6=4 -3+4=1
Izračunajte vsoto za vsak par.
a=-2 b=6
Rešitev je par, ki zagotavlja vsoto 4.
\left(x-2\right)\left(x+6\right)
Faktorirati izraz za znova napišite \left(x+a\right)\left(x+b\right) z pridobljene vrednosti.
x=2 x=-6
Če želite poiskati rešitve za enačbe, rešite x-2=0 in x+6=0.
\left(x+2\right)^{2}=\frac{48}{3}
Delite obe strani z vrednostjo 3.
\left(x+2\right)^{2}=16
Delite 48 s/z 3, da dobite 16.
x^{2}+4x+4=16
Uporabite binomski izrek \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, da razširite \left(x+2\right)^{2}.
x^{2}+4x+4-16=0
Odštejte 16 na obeh straneh.
x^{2}+4x-12=0
Odštejte 16 od 4, da dobite -12.
a+b=4 ab=1\left(-12\right)=-12
Če želite rešiti enačbo, faktor levo roko po združiti. Najprej, na levi strani mora biti uporabnika kot x^{2}+ax+bx-12. Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
-1,12 -2,6 -3,4
Ker je ab negativen, a in b imajo nenegativno vrednost. Ker je a+b pozitivno, je pozitivno število večje absolutno vrednosti kot negativno. Navedite vse takšne pare celega števila, ki nudijo -12 izdelka.
-1+12=11 -2+6=4 -3+4=1
Izračunajte vsoto za vsak par.
a=-2 b=6
Rešitev je par, ki zagotavlja vsoto 4.
\left(x^{2}-2x\right)+\left(6x-12\right)
Znova zapišite x^{2}+4x-12 kot \left(x^{2}-2x\right)+\left(6x-12\right).
x\left(x-2\right)+6\left(x-2\right)
Faktor x v prvem in 6 v drugi skupini.
\left(x-2\right)\left(x+6\right)
Faktor skupnega člena x-2 z uporabo lastnosti distributivnosti.
x=2 x=-6
Če želite poiskati rešitve za enačbe, rešite x-2=0 in x+6=0.
\left(x+2\right)^{2}=\frac{48}{3}
Delite obe strani z vrednostjo 3.
\left(x+2\right)^{2}=16
Delite 48 s/z 3, da dobite 16.
x^{2}+4x+4=16
Uporabite binomski izrek \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, da razširite \left(x+2\right)^{2}.
x^{2}+4x+4-16=0
Odštejte 16 na obeh straneh.
x^{2}+4x-12=0
Odštejte 16 od 4, da dobite -12.
x=\frac{-4±\sqrt{4^{2}-4\left(-12\right)}}{2}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 1 za a, 4 za b in -12 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-12\right)}}{2}
Kvadrat števila 4.
x=\frac{-4±\sqrt{16+48}}{2}
Pomnožite -4 s/z -12.
x=\frac{-4±\sqrt{64}}{2}
Seštejte 16 in 48.
x=\frac{-4±8}{2}
Uporabite kvadratni koren števila 64.
x=\frac{4}{2}
Zdaj rešite enačbo x=\frac{-4±8}{2}, ko je ± plus. Seštejte -4 in 8.
x=2
Delite 4 s/z 2.
x=-\frac{12}{2}
Zdaj rešite enačbo x=\frac{-4±8}{2}, ko je ± minus. Odštejte 8 od -4.
x=-6
Delite -12 s/z 2.
x=2 x=-6
Enačba je zdaj rešena.
\left(x+2\right)^{2}=\frac{48}{3}
Delite obe strani z vrednostjo 3.
\left(x+2\right)^{2}=16
Delite 48 s/z 3, da dobite 16.
\sqrt{\left(x+2\right)^{2}}=\sqrt{16}
Uporabite kvadratni koren obeh strani enačbe.
x+2=4 x+2=-4
Poenostavite.
x=2 x=-6
Odštejte 2 na obeh straneh enačbe.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}