Ovrednoti
\frac{56\sqrt{10}}{3}+4\approx 63,02918299
Faktoriziraj
\frac{4 {(14 \sqrt{10} + 3)}}{3} = 63,029182989809755
Delež
Kopirano v odložišče
3\times \frac{\left(7+2\sqrt{10}\right)^{2}}{3^{2}}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Če želite dobiti potenco vrednosti \frac{7+2\sqrt{10}}{3}, potencirajte števec in imenovalec, nato pa delite.
\frac{3\left(7+2\sqrt{10}\right)^{2}}{3^{2}}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Izrazite 3\times \frac{\left(7+2\sqrt{10}\right)^{2}}{3^{2}} kot enojni ulomek.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Okrajšaj 3 v števcu in imenovalcu.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+\frac{4\left(7+2\sqrt{10}\right)}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Izrazite 4\times \frac{7+2\sqrt{10}}{3} kot enojni ulomek.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+\frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Pomnožite \frac{4\left(7+2\sqrt{10}\right)}{3} s/z \frac{7-2\sqrt{10}}{3} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{3\left(2\sqrt{10}+7\right)^{2}}{3\times 3}+\frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 3 in 3\times 3 je 3\times 3. Pomnožite \frac{\left(2\sqrt{10}+7\right)^{2}}{3} s/z \frac{3}{3}.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
\frac{3\left(2\sqrt{10}+7\right)^{2}}{3\times 3} in \frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \frac{\left(7-2\sqrt{10}\right)^{2}}{3^{2}}
Če želite dobiti potenco vrednosti \frac{7-2\sqrt{10}}{3}, potencirajte števec in imenovalec, nato pa delite.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{3\left(7-2\sqrt{10}\right)^{2}}{3^{2}}
Izrazite 3\times \frac{\left(7-2\sqrt{10}\right)^{2}}{3^{2}} kot enojni ulomek.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{\left(-2\sqrt{10}+7\right)^{2}}{3}
Okrajšaj 3 v števcu in imenovalcu.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{4\left(\sqrt{10}\right)^{2}-28\sqrt{10}+49}{3}
Uporabite binomski izrek \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, da razširite \left(-2\sqrt{10}+7\right)^{2}.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{4\times 10-28\sqrt{10}+49}{3}
Kvadrat vrednosti \sqrt{10} je 10.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{40-28\sqrt{10}+49}{3}
Pomnožite 4 in 10, da dobite 40.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Seštejte 40 in 49, da dobite 89.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{3\left(89-28\sqrt{10}\right)}{3\times 3}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 3\times 3 in 3 je 3\times 3. Pomnožite \frac{89-28\sqrt{10}}{3} s/z \frac{3}{3}.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right)}{3\times 3}
Ker \frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3} in \frac{3\left(89-28\sqrt{10}\right)}{3\times 3} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{3\left(4\left(\sqrt{10}\right)^{2}+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Uporabite binomski izrek \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, da razširite \left(2\sqrt{10}+7\right)^{2}.
\frac{3\left(4\times 10+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Kvadrat vrednosti \sqrt{10} je 10.
\frac{3\left(40+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Pomnožite 4 in 10, da dobite 40.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Seštejte 40 in 49, da dobite 89.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9}-\frac{89-28\sqrt{10}}{3}
Pomnožite 3 in 3, da dobite 9.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9}-\frac{3\left(89-28\sqrt{10}\right)}{9}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 9 in 3 je 9. Pomnožite \frac{89-28\sqrt{10}}{3} s/z \frac{3}{3}.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right)}{9}
Ker \frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9} in \frac{3\left(89-28\sqrt{10}\right)}{9} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{267+84\sqrt{10}+196-56\sqrt{10}+56\sqrt{10}-160-267+84\sqrt{10}}{9}
Izvedi množenje v 3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right).
\frac{36+168\sqrt{10}}{9}
Izvedi izračune v 267+84\sqrt{10}+196-56\sqrt{10}+56\sqrt{10}-160-267+84\sqrt{10}.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}