Rešitev za z
z=\frac{1}{2}+\frac{3}{2}i=0,5+1,5i
z=\frac{1}{2}-\frac{3}{2}i=0,5-1,5i
Delež
Kopirano v odložišče
2z^{2}-2z+5=0
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
z=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 5}}{2\times 2}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 2 za a, -2 za b in 5 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-2\right)±\sqrt{4-4\times 2\times 5}}{2\times 2}
Kvadrat števila -2.
z=\frac{-\left(-2\right)±\sqrt{4-8\times 5}}{2\times 2}
Pomnožite -4 s/z 2.
z=\frac{-\left(-2\right)±\sqrt{4-40}}{2\times 2}
Pomnožite -8 s/z 5.
z=\frac{-\left(-2\right)±\sqrt{-36}}{2\times 2}
Seštejte 4 in -40.
z=\frac{-\left(-2\right)±6i}{2\times 2}
Uporabite kvadratni koren števila -36.
z=\frac{2±6i}{2\times 2}
Nasprotna vrednost -2 je 2.
z=\frac{2±6i}{4}
Pomnožite 2 s/z 2.
z=\frac{2+6i}{4}
Zdaj rešite enačbo z=\frac{2±6i}{4}, ko je ± plus. Seštejte 2 in 6i.
z=\frac{1}{2}+\frac{3}{2}i
Delite 2+6i s/z 4.
z=\frac{2-6i}{4}
Zdaj rešite enačbo z=\frac{2±6i}{4}, ko je ± minus. Odštejte 6i od 2.
z=\frac{1}{2}-\frac{3}{2}i
Delite 2-6i s/z 4.
z=\frac{1}{2}+\frac{3}{2}i z=\frac{1}{2}-\frac{3}{2}i
Enačba je zdaj rešena.
2z^{2}-2z+5=0
Kvadratne enačbe, kot je ta, lahko rešite z dopolnjevanjem do popolnega kvadrata. Za dopolnjevanje do popolnega kvadrata morate enačbo najprej pretvoriti v obliko x^{2}+bx=c.
2z^{2}-2z+5-5=-5
Odštejte 5 na obeh straneh enačbe.
2z^{2}-2z=-5
Če število 5 odštejete od enakega števila, dobite 0.
\frac{2z^{2}-2z}{2}=-\frac{5}{2}
Delite obe strani z vrednostjo 2.
z^{2}+\left(-\frac{2}{2}\right)z=-\frac{5}{2}
Z deljenjem s/z 2 razveljavite množenje s/z 2.
z^{2}-z=-\frac{5}{2}
Delite -2 s/z 2.
z^{2}-z+\left(-\frac{1}{2}\right)^{2}=-\frac{5}{2}+\left(-\frac{1}{2}\right)^{2}
Delite -1, ki je koeficient člena x, z 2, da dobite -\frac{1}{2}. Nato dodajte kvadrat števila -\frac{1}{2} na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
z^{2}-z+\frac{1}{4}=-\frac{5}{2}+\frac{1}{4}
Kvadrirajte ulomek -\frac{1}{2} tako, da kvadrirate števec in imenovalec ulomka.
z^{2}-z+\frac{1}{4}=-\frac{9}{4}
Seštejte -\frac{5}{2} in \frac{1}{4} tako, da poiščete skupni imenovalec in seštejete števce. Nato okrajšajte ulomek do najnižjih možnih členov.
\left(z-\frac{1}{2}\right)^{2}=-\frac{9}{4}
Faktorizirajte z^{2}-z+\frac{1}{4}. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{9}{4}}
Uporabite kvadratni koren obeh strani enačbe.
z-\frac{1}{2}=\frac{3}{2}i z-\frac{1}{2}=-\frac{3}{2}i
Poenostavite.
z=\frac{1}{2}+\frac{3}{2}i z=\frac{1}{2}-\frac{3}{2}i
Prištejte \frac{1}{2} na obe strani enačbe.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}