Faktoriziraj
\left(x+1\right)\left(2x+5\right)
Ovrednoti
\left(x+1\right)\left(2x+5\right)
Graf
Delež
Kopirano v odložišče
a+b=7 ab=2\times 5=10
Faktorizirajte izraz z združevanjem. Najprej je treba izraz znova napisati kot 2x^{2}+ax+bx+5. Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
1,10 2,5
Ker je ab pozitivno, a in b imeti enak znak. Ker je a+b pozitivno, a in b sta pozitivna. Navedite vse takšne pare celega števila, ki nudijo 10 izdelka.
1+10=11 2+5=7
Izračunajte vsoto za vsak par.
a=2 b=5
Rešitev je par, ki zagotavlja vsoto 7.
\left(2x^{2}+2x\right)+\left(5x+5\right)
Znova zapišite 2x^{2}+7x+5 kot \left(2x^{2}+2x\right)+\left(5x+5\right).
2x\left(x+1\right)+5\left(x+1\right)
Faktor 2x v prvem in 5 v drugi skupini.
\left(x+1\right)\left(2x+5\right)
Faktor skupnega člena x+1 z uporabo lastnosti distributivnosti.
2x^{2}+7x+5=0
Kvadratni polinom je mogoče faktorizirati s transformacijo ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kjer sta x_{1} in x_{2} rešitvi kvadratne enačbe ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
Kvadrat števila 7.
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
Pomnožite -4 s/z 2.
x=\frac{-7±\sqrt{49-40}}{2\times 2}
Pomnožite -8 s/z 5.
x=\frac{-7±\sqrt{9}}{2\times 2}
Seštejte 49 in -40.
x=\frac{-7±3}{2\times 2}
Uporabite kvadratni koren števila 9.
x=\frac{-7±3}{4}
Pomnožite 2 s/z 2.
x=-\frac{4}{4}
Zdaj rešite enačbo x=\frac{-7±3}{4}, ko je ± plus. Seštejte -7 in 3.
x=-1
Delite -4 s/z 4.
x=-\frac{10}{4}
Zdaj rešite enačbo x=\frac{-7±3}{4}, ko je ± minus. Odštejte 3 od -7.
x=-\frac{5}{2}
Zmanjšajte ulomek \frac{-10}{4} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
2x^{2}+7x+5=2\left(x-\left(-1\right)\right)\left(x-\left(-\frac{5}{2}\right)\right)
Faktorizirajte izvirni izraz tako, da uporabite ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamenjajte vrednost -1 z vrednostjo x_{1}, vrednost -\frac{5}{2} pa z vrednostjo x_{2}.
2x^{2}+7x+5=2\left(x+1\right)\left(x+\frac{5}{2}\right)
Poenostavite vse izraze obrazca p-\left(-q\right) na p+q.
2x^{2}+7x+5=2\left(x+1\right)\times \frac{2x+5}{2}
Seštejte \frac{5}{2} in x tako, da poiščete skupni imenovalec in seštejete števce. Nato okrajšajte ulomek do najnižjih možnih členov.
2x^{2}+7x+5=\left(x+1\right)\left(2x+5\right)
Okrajšaj največji skupni imenovalec 2 v vrednosti 2 in 2.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}