Preskoči na glavno vsebino
Rešitev za x (complex solution)
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

2x^{2}+x+3=0
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-1±\sqrt{1^{2}-4\times 2\times 3}}{2\times 2}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 2 za a, 1 za b in 3 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2\times 3}}{2\times 2}
Kvadrat števila 1.
x=\frac{-1±\sqrt{1-8\times 3}}{2\times 2}
Pomnožite -4 s/z 2.
x=\frac{-1±\sqrt{1-24}}{2\times 2}
Pomnožite -8 s/z 3.
x=\frac{-1±\sqrt{-23}}{2\times 2}
Seštejte 1 in -24.
x=\frac{-1±\sqrt{23}i}{2\times 2}
Uporabite kvadratni koren števila -23.
x=\frac{-1±\sqrt{23}i}{4}
Pomnožite 2 s/z 2.
x=\frac{-1+\sqrt{23}i}{4}
Zdaj rešite enačbo x=\frac{-1±\sqrt{23}i}{4}, ko je ± plus. Seštejte -1 in i\sqrt{23}.
x=\frac{-\sqrt{23}i-1}{4}
Zdaj rešite enačbo x=\frac{-1±\sqrt{23}i}{4}, ko je ± minus. Odštejte i\sqrt{23} od -1.
x=\frac{-1+\sqrt{23}i}{4} x=\frac{-\sqrt{23}i-1}{4}
Enačba je zdaj rešena.
2x^{2}+x+3=0
Kvadratne enačbe, kot je ta, lahko rešite z dopolnjevanjem do popolnega kvadrata. Za dopolnjevanje do popolnega kvadrata morate enačbo najprej pretvoriti v obliko x^{2}+bx=c.
2x^{2}+x+3-3=-3
Odštejte 3 na obeh straneh enačbe.
2x^{2}+x=-3
Če število 3 odštejete od enakega števila, dobite 0.
\frac{2x^{2}+x}{2}=-\frac{3}{2}
Delite obe strani z vrednostjo 2.
x^{2}+\frac{1}{2}x=-\frac{3}{2}
Z deljenjem s/z 2 razveljavite množenje s/z 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{1}{4}\right)^{2}
Delite \frac{1}{2}, ki je koeficient člena x, z 2, da dobite \frac{1}{4}. Nato dodajte kvadrat števila \frac{1}{4} na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{3}{2}+\frac{1}{16}
Kvadrirajte ulomek \frac{1}{4} tako, da kvadrirate števec in imenovalec ulomka.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{23}{16}
Seštejte -\frac{3}{2} in \frac{1}{16} tako, da poiščete skupni imenovalec in seštejete števce. Nato okrajšajte ulomek do najnižjih možnih členov.
\left(x+\frac{1}{4}\right)^{2}=-\frac{23}{16}
Faktorizirajte x^{2}+\frac{1}{2}x+\frac{1}{16}. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{23}{16}}
Uporabite kvadratni koren obeh strani enačbe.
x+\frac{1}{4}=\frac{\sqrt{23}i}{4} x+\frac{1}{4}=-\frac{\sqrt{23}i}{4}
Poenostavite.
x=\frac{-1+\sqrt{23}i}{4} x=\frac{-\sqrt{23}i-1}{4}
Odštejte \frac{1}{4} na obeh straneh enačbe.