Rešitev za a (complex solution)
\left\{\begin{matrix}\\a=-\left(b+c\right)\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&k=2\end{matrix}\right,
Rešitev za b (complex solution)
\left\{\begin{matrix}\\b=-\left(a+c\right)\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&k=2\end{matrix}\right,
Rešitev za a
\left\{\begin{matrix}\\a=-\left(b+c\right)\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&k=2\end{matrix}\right,
Rešitev za b
\left\{\begin{matrix}\\b=-\left(a+c\right)\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&k=2\end{matrix}\right,
Delež
Kopirano v odložišče
2a+2b+2c=\left(a+b+c\right)k
Uporabite distributivnost, da pomnožite 2 s/z a+b+c.
2a+2b+2c=ak+bk+ck
Uporabite distributivnost, da pomnožite a+b+c s/z k.
2a+2b+2c-ak=bk+ck
Odštejte ak na obeh straneh.
2a+2c-ak=bk+ck-2b
Odštejte 2b na obeh straneh.
2a-ak=bk+ck-2b-2c
Odštejte 2c na obeh straneh.
\left(2-k\right)a=bk+ck-2b-2c
Združite vse člene, ki vsebujejo a.
\left(2-k\right)a=bk-2b+ck-2c
Enačba je v standardni obliki.
\frac{\left(2-k\right)a}{2-k}=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Delite obe strani z vrednostjo 2-k.
a=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Z deljenjem s/z 2-k razveljavite množenje s/z 2-k.
a=-\left(b+c\right)
Delite \left(-2+k\right)\left(b+c\right) s/z 2-k.
2a+2b+2c=\left(a+b+c\right)k
Uporabite distributivnost, da pomnožite 2 s/z a+b+c.
2a+2b+2c=ak+bk+ck
Uporabite distributivnost, da pomnožite a+b+c s/z k.
2a+2b+2c-bk=ak+ck
Odštejte bk na obeh straneh.
2b+2c-bk=ak+ck-2a
Odštejte 2a na obeh straneh.
2b-bk=ak+ck-2a-2c
Odštejte 2c na obeh straneh.
\left(2-k\right)b=ak+ck-2a-2c
Združite vse člene, ki vsebujejo b.
\left(2-k\right)b=ak-2a+ck-2c
Enačba je v standardni obliki.
\frac{\left(2-k\right)b}{2-k}=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Delite obe strani z vrednostjo 2-k.
b=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Z deljenjem s/z 2-k razveljavite množenje s/z 2-k.
b=-\left(a+c\right)
Delite \left(-2+k\right)\left(a+c\right) s/z 2-k.
2a+2b+2c=\left(a+b+c\right)k
Uporabite distributivnost, da pomnožite 2 s/z a+b+c.
2a+2b+2c=ak+bk+ck
Uporabite distributivnost, da pomnožite a+b+c s/z k.
2a+2b+2c-ak=bk+ck
Odštejte ak na obeh straneh.
2a+2c-ak=bk+ck-2b
Odštejte 2b na obeh straneh.
2a-ak=bk+ck-2b-2c
Odštejte 2c na obeh straneh.
\left(2-k\right)a=bk+ck-2b-2c
Združite vse člene, ki vsebujejo a.
\left(2-k\right)a=bk-2b+ck-2c
Enačba je v standardni obliki.
\frac{\left(2-k\right)a}{2-k}=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Delite obe strani z vrednostjo 2-k.
a=\frac{\left(k-2\right)\left(b+c\right)}{2-k}
Z deljenjem s/z 2-k razveljavite množenje s/z 2-k.
a=-\left(b+c\right)
Delite \left(-2+k\right)\left(b+c\right) s/z 2-k.
2a+2b+2c=\left(a+b+c\right)k
Uporabite distributivnost, da pomnožite 2 s/z a+b+c.
2a+2b+2c=ak+bk+ck
Uporabite distributivnost, da pomnožite a+b+c s/z k.
2a+2b+2c-bk=ak+ck
Odštejte bk na obeh straneh.
2b+2c-bk=ak+ck-2a
Odštejte 2a na obeh straneh.
2b-bk=ak+ck-2a-2c
Odštejte 2c na obeh straneh.
\left(2-k\right)b=ak+ck-2a-2c
Združite vse člene, ki vsebujejo b.
\left(2-k\right)b=ak-2a+ck-2c
Enačba je v standardni obliki.
\frac{\left(2-k\right)b}{2-k}=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Delite obe strani z vrednostjo 2-k.
b=\frac{\left(k-2\right)\left(a+c\right)}{2-k}
Z deljenjem s/z 2-k razveljavite množenje s/z 2-k.
b=-\left(a+c\right)
Delite \left(-2+k\right)\left(a+c\right) s/z 2-k.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}