Rešitev za p
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}\approx 87,736047709+967,315156682i
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}\approx 87,736047709-967,315156682i
Delež
Kopirano v odložišče
1044\times \frac{1}{1000}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Izračunajte potenco 10 števila -3, da dobite \frac{1}{1000}.
\frac{261}{250}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Pomnožite 1044 in \frac{1}{1000}, da dobite \frac{261}{250}.
\frac{261}{250}p=2478968175\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Pomnožite 83145 in 29815, da dobite 2478968175.
\frac{261}{250}p=2478968175\left(1-186\times \frac{1}{1000000}p+106\times 10^{-8}p^{2}\right)
Izračunajte potenco 10 števila -6, da dobite \frac{1}{1000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times 10^{-8}p^{2}\right)
Pomnožite 186 in \frac{1}{1000000}, da dobite \frac{93}{500000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times \frac{1}{100000000}p^{2}\right)
Izračunajte potenco 10 števila -8, da dobite \frac{1}{100000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}\right)
Pomnožite 106 in \frac{1}{100000000}, da dobite \frac{53}{50000000}.
\frac{261}{250}p=2478968175-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
Uporabite distributivnost, da pomnožite 2478968175 s/z 1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}.
\frac{261}{250}p-2478968175=-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
Odštejte 2478968175 na obeh straneh.
\frac{261}{250}p-2478968175+\frac{9221761611}{20000}p=\frac{5255412531}{2000000}p^{2}
Dodajte \frac{9221761611}{20000}p na obe strani.
\frac{9221782491}{20000}p-2478968175=\frac{5255412531}{2000000}p^{2}
Združite \frac{261}{250}p in \frac{9221761611}{20000}p, da dobite \frac{9221782491}{20000}p.
\frac{9221782491}{20000}p-2478968175-\frac{5255412531}{2000000}p^{2}=0
Odštejte \frac{5255412531}{2000000}p^{2} na obeh straneh.
-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p-2478968175=0
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\left(\frac{9221782491}{20000}\right)^{2}-4\left(-\frac{5255412531}{2000000}\right)\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite -\frac{5255412531}{2000000} za a, \frac{9221782491}{20000} za b in -2478968175 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}-4\left(-\frac{5255412531}{2000000}\right)\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
Kvadrirajte ulomek \frac{9221782491}{20000} tako, da kvadrirate števec in imenovalec ulomka.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}+\frac{5255412531}{500000}\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
Pomnožite -4 s/z -\frac{5255412531}{2000000}.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}-\frac{521120016433808037}{20000}}}{2\left(-\frac{5255412531}{2000000}\right)}
Pomnožite \frac{5255412531}{500000} s/z -2478968175.
p=\frac{-\frac{9221782491}{20000}±\sqrt{-\frac{10337359056364846574919}{400000000}}}{2\left(-\frac{5255412531}{2000000}\right)}
Seštejte \frac{85041272311314165081}{400000000} in -\frac{521120016433808037}{20000} tako, da poiščete skupni imenovalec in seštejete števce. Nato okrajšajte ulomek do najnižjih možnih členov.
p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{2\left(-\frac{5255412531}{2000000}\right)}
Uporabite kvadratni koren števila -\frac{10337359056364846574919}{400000000}.
p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}}
Pomnožite 2 s/z -\frac{5255412531}{2000000}.
p=\frac{-9221782491+3\sqrt{1148595450707205174991}i}{-\frac{5255412531}{1000000}\times 20000}
Zdaj rešite enačbo p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}}, ko je ± plus. Seštejte -\frac{9221782491}{20000} in \frac{3i\sqrt{1148595450707205174991}}{20000}.
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}
Delite \frac{-9221782491+3i\sqrt{1148595450707205174991}}{20000} s/z -\frac{5255412531}{1000000} tako, da pomnožite \frac{-9221782491+3i\sqrt{1148595450707205174991}}{20000} z obratno vrednostjo -\frac{5255412531}{1000000}.
p=\frac{-3\sqrt{1148595450707205174991}i-9221782491}{-\frac{5255412531}{1000000}\times 20000}
Zdaj rešite enačbo p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}}, ko je ± minus. Odštejte \frac{3i\sqrt{1148595450707205174991}}{20000} od -\frac{9221782491}{20000}.
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}
Delite \frac{-9221782491-3i\sqrt{1148595450707205174991}}{20000} s/z -\frac{5255412531}{1000000} tako, da pomnožite \frac{-9221782491-3i\sqrt{1148595450707205174991}}{20000} z obratno vrednostjo -\frac{5255412531}{1000000}.
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177} p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}
Enačba je zdaj rešena.
1044\times \frac{1}{1000}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Izračunajte potenco 10 števila -3, da dobite \frac{1}{1000}.
\frac{261}{250}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Pomnožite 1044 in \frac{1}{1000}, da dobite \frac{261}{250}.
\frac{261}{250}p=2478968175\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Pomnožite 83145 in 29815, da dobite 2478968175.
\frac{261}{250}p=2478968175\left(1-186\times \frac{1}{1000000}p+106\times 10^{-8}p^{2}\right)
Izračunajte potenco 10 števila -6, da dobite \frac{1}{1000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times 10^{-8}p^{2}\right)
Pomnožite 186 in \frac{1}{1000000}, da dobite \frac{93}{500000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times \frac{1}{100000000}p^{2}\right)
Izračunajte potenco 10 števila -8, da dobite \frac{1}{100000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}\right)
Pomnožite 106 in \frac{1}{100000000}, da dobite \frac{53}{50000000}.
\frac{261}{250}p=2478968175-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
Uporabite distributivnost, da pomnožite 2478968175 s/z 1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}.
\frac{261}{250}p+\frac{9221761611}{20000}p=2478968175+\frac{5255412531}{2000000}p^{2}
Dodajte \frac{9221761611}{20000}p na obe strani.
\frac{9221782491}{20000}p=2478968175+\frac{5255412531}{2000000}p^{2}
Združite \frac{261}{250}p in \frac{9221761611}{20000}p, da dobite \frac{9221782491}{20000}p.
\frac{9221782491}{20000}p-\frac{5255412531}{2000000}p^{2}=2478968175
Odštejte \frac{5255412531}{2000000}p^{2} na obeh straneh.
-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p=2478968175
Kvadratne enačbe, kot je ta, lahko rešite z dopolnjevanjem do popolnega kvadrata. Za dopolnjevanje do popolnega kvadrata morate enačbo najprej pretvoriti v obliko x^{2}+bx=c.
\frac{-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p}{-\frac{5255412531}{2000000}}=\frac{2478968175}{-\frac{5255412531}{2000000}}
Delite obe strani enačbe s/z -\frac{5255412531}{2000000}, kar je enako množenju obeh strani enačbe z obratnim ulomkom.
p^{2}+\frac{\frac{9221782491}{20000}}{-\frac{5255412531}{2000000}}p=\frac{2478968175}{-\frac{5255412531}{2000000}}
Z deljenjem s/z -\frac{5255412531}{2000000} razveljavite množenje s/z -\frac{5255412531}{2000000}.
p^{2}-\frac{307392749700}{1751804177}p=\frac{2478968175}{-\frac{5255412531}{2000000}}
Delite \frac{9221782491}{20000} s/z -\frac{5255412531}{2000000} tako, da pomnožite \frac{9221782491}{20000} z obratno vrednostjo -\frac{5255412531}{2000000}.
p^{2}-\frac{307392749700}{1751804177}p=-\frac{50000000}{53}
Delite 2478968175 s/z -\frac{5255412531}{2000000} tako, da pomnožite 2478968175 z obratno vrednostjo -\frac{5255412531}{2000000}.
p^{2}-\frac{307392749700}{1751804177}p+\left(-\frac{153696374850}{1751804177}\right)^{2}=-\frac{50000000}{53}+\left(-\frac{153696374850}{1751804177}\right)^{2}
Delite -\frac{307392749700}{1751804177}, ki je koeficient člena x, z 2, da dobite -\frac{153696374850}{1751804177}. Nato dodajte kvadrat števila -\frac{153696374850}{1751804177} na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}=-\frac{50000000}{53}+\frac{23622575642031712522500}{3068817874554647329}
Kvadrirajte ulomek -\frac{153696374850}{1751804177} tako, da kvadrirate števec in imenovalec ulomka.
p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}=-\frac{2871488626768012937477500}{3068817874554647329}
Seštejte -\frac{50000000}{53} in \frac{23622575642031712522500}{3068817874554647329} tako, da poiščete skupni imenovalec in seštejete števce. Nato okrajšajte ulomek do najnižjih možnih členov.
\left(p-\frac{153696374850}{1751804177}\right)^{2}=-\frac{2871488626768012937477500}{3068817874554647329}
Faktorizirajte p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{153696374850}{1751804177}\right)^{2}}=\sqrt{-\frac{2871488626768012937477500}{3068817874554647329}}
Uporabite kvadratni koren obeh strani enačbe.
p-\frac{153696374850}{1751804177}=\frac{50\sqrt{1148595450707205174991}i}{1751804177} p-\frac{153696374850}{1751804177}=-\frac{50\sqrt{1148595450707205174991}i}{1751804177}
Poenostavite.
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177} p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}
Prištejte \frac{153696374850}{1751804177} na obe strani enačbe.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}