Ovrednoti
\frac{197459}{500}=394,918
Faktoriziraj
\frac{379 \cdot 521}{2 ^ {2} \cdot 5 ^ {3}} = 394\frac{459}{500} = 394,918
Delež
Kopirano v odložišče
\frac{\frac{-\frac{3}{4}\times \frac{50+21}{25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite 2 in 25, da dobite 50.
\frac{\frac{-\frac{3}{4}\times \frac{71}{25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Seštejte 50 in 21, da dobite 71.
\frac{\frac{\frac{-3\times 71}{4\times 25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite -\frac{3}{4} s/z \frac{71}{25} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{\frac{\frac{-213}{100}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Izvedite množenja v ulomku \frac{-3\times 71}{4\times 25}.
\frac{\frac{-\frac{213}{100}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Ulomek \frac{-213}{100} je mogoče drugače zapisati kot -\frac{213}{100} z ekstrahiranjem negativnega znaka.
\frac{\frac{-\frac{213}{100}}{\frac{15+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite 3 in 5, da dobite 15.
\frac{\frac{-\frac{213}{100}}{\frac{18}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Seštejte 15 in 3, da dobite 18.
\frac{-\frac{213}{100}\times \frac{5}{18}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Delite -\frac{213}{100} s/z \frac{18}{5} tako, da pomnožite -\frac{213}{100} z obratno vrednostjo \frac{18}{5}.
\frac{\frac{-213\times 5}{100\times 18}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite -\frac{213}{100} s/z \frac{5}{18} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{\frac{-1065}{1800}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Izvedite množenja v ulomku \frac{-213\times 5}{100\times 18}.
\frac{-\frac{71}{120}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Zmanjšajte ulomek \frac{-1065}{1800} na najmanjši imenovalec tako, da izpeljete in okrajšate 15.
\frac{-\frac{71}{120}}{-\frac{2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite 1 in 2, da dobite 2.
\frac{-\frac{71}{120}}{-\frac{3}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Seštejte 2 in 1, da dobite 3.
-\frac{71}{120}\left(-\frac{2}{3}\right)\times \frac{50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Delite -\frac{71}{120} s/z -\frac{3}{2} tako, da pomnožite -\frac{71}{120} z obratno vrednostjo -\frac{3}{2}.
\frac{-71\left(-2\right)}{120\times 3}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite -\frac{71}{120} s/z -\frac{2}{3} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{142}{360}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Izvedite množenja v ulomku \frac{-71\left(-2\right)}{120\times 3}.
\frac{71}{180}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Zmanjšajte ulomek \frac{142}{360} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{71}{180}\times \frac{50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite 1 in 50, da dobite 50.
\frac{71}{180}\times \frac{71}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Seštejte 50 in 21, da dobite 71.
\frac{71\times 71}{180\times 50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite \frac{71}{180} s/z \frac{71}{50} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{5041}{9000}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Izvedite množenja v ulomku \frac{71\times 71}{180\times 50}.
\frac{5041\left(-18\right)}{9000}-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Izrazite \frac{5041}{9000}\left(-18\right) kot enojni ulomek.
\frac{-90738}{9000}-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite 5041 in -18, da dobite -90738.
-\frac{5041}{500}-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Zmanjšajte ulomek \frac{-90738}{9000} na najmanjši imenovalec tako, da izpeljete in okrajšate 18.
-\frac{5041}{500}-4\times 25\left(-\frac{4\times 20+1}{20}\right)
Izračunajte potenco -2 števila 2, da dobite 4.
-\frac{5041}{500}-100\left(-\frac{4\times 20+1}{20}\right)
Pomnožite 4 in 25, da dobite 100.
-\frac{5041}{500}-100\left(-\frac{80+1}{20}\right)
Pomnožite 4 in 20, da dobite 80.
-\frac{5041}{500}-100\left(-\frac{81}{20}\right)
Seštejte 80 in 1, da dobite 81.
-\frac{5041}{500}-\frac{100\left(-81\right)}{20}
Izrazite 100\left(-\frac{81}{20}\right) kot enojni ulomek.
-\frac{5041}{500}-\frac{-8100}{20}
Pomnožite 100 in -81, da dobite -8100.
-\frac{5041}{500}-\left(-405\right)
Delite -8100 s/z 20, da dobite -405.
-\frac{5041}{500}+405
Nasprotna vrednost -405 je 405.
-\frac{5041}{500}+\frac{202500}{500}
Pretvorite 405 v ulomek \frac{202500}{500}.
\frac{-5041+202500}{500}
-\frac{5041}{500} in \frac{202500}{500} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{197459}{500}
Seštejte -5041 in 202500, da dobite 197459.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}