Preskoči na glavno vsebino
Rešitev za x
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

x^{2}+19x=8100
Uporabite distributivnost, da pomnožite x+19 s/z x.
x^{2}+19x-8100=0
Odštejte 8100 na obeh straneh.
x=\frac{-19±\sqrt{19^{2}-4\left(-8100\right)}}{2}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 1 za a, 19 za b in -8100 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\left(-8100\right)}}{2}
Kvadrat števila 19.
x=\frac{-19±\sqrt{361+32400}}{2}
Pomnožite -4 s/z -8100.
x=\frac{-19±\sqrt{32761}}{2}
Seštejte 361 in 32400.
x=\frac{-19±181}{2}
Uporabite kvadratni koren števila 32761.
x=\frac{162}{2}
Zdaj rešite enačbo x=\frac{-19±181}{2}, ko je ± plus. Seštejte -19 in 181.
x=81
Delite 162 s/z 2.
x=-\frac{200}{2}
Zdaj rešite enačbo x=\frac{-19±181}{2}, ko je ± minus. Odštejte 181 od -19.
x=-100
Delite -200 s/z 2.
x=81 x=-100
Enačba je zdaj rešena.
x^{2}+19x=8100
Uporabite distributivnost, da pomnožite x+19 s/z x.
x^{2}+19x+\left(\frac{19}{2}\right)^{2}=8100+\left(\frac{19}{2}\right)^{2}
Delite 19, ki je koeficient člena x, z 2, da dobite \frac{19}{2}. Nato dodajte kvadrat števila \frac{19}{2} na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
x^{2}+19x+\frac{361}{4}=8100+\frac{361}{4}
Kvadrirajte ulomek \frac{19}{2} tako, da kvadrirate števec in imenovalec ulomka.
x^{2}+19x+\frac{361}{4}=\frac{32761}{4}
Seštejte 8100 in \frac{361}{4}.
\left(x+\frac{19}{2}\right)^{2}=\frac{32761}{4}
Faktorizirajte x^{2}+19x+\frac{361}{4}. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{2}\right)^{2}}=\sqrt{\frac{32761}{4}}
Uporabite kvadratni koren obeh strani enačbe.
x+\frac{19}{2}=\frac{181}{2} x+\frac{19}{2}=-\frac{181}{2}
Poenostavite.
x=81 x=-100
Odštejte \frac{19}{2} na obeh straneh enačbe.