Preskoči na glavno vsebino
Rešitev za x
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

6000+700x+10x^{2}=10000
Uporabite lastnost distributivnosti za množenje 600+10x krat 10+x in kombiniranje pogojev podobnosti.
6000+700x+10x^{2}-10000=0
Odštejte 10000 na obeh straneh.
-4000+700x+10x^{2}=0
Odštejte 10000 od 6000, da dobite -4000.
10x^{2}+700x-4000=0
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-700±\sqrt{700^{2}-4\times 10\left(-4000\right)}}{2\times 10}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 10 za a, 700 za b in -4000 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-700±\sqrt{490000-4\times 10\left(-4000\right)}}{2\times 10}
Kvadrat števila 700.
x=\frac{-700±\sqrt{490000-40\left(-4000\right)}}{2\times 10}
Pomnožite -4 s/z 10.
x=\frac{-700±\sqrt{490000+160000}}{2\times 10}
Pomnožite -40 s/z -4000.
x=\frac{-700±\sqrt{650000}}{2\times 10}
Seštejte 490000 in 160000.
x=\frac{-700±100\sqrt{65}}{2\times 10}
Uporabite kvadratni koren števila 650000.
x=\frac{-700±100\sqrt{65}}{20}
Pomnožite 2 s/z 10.
x=\frac{100\sqrt{65}-700}{20}
Zdaj rešite enačbo x=\frac{-700±100\sqrt{65}}{20}, ko je ± plus. Seštejte -700 in 100\sqrt{65}.
x=5\sqrt{65}-35
Delite -700+100\sqrt{65} s/z 20.
x=\frac{-100\sqrt{65}-700}{20}
Zdaj rešite enačbo x=\frac{-700±100\sqrt{65}}{20}, ko je ± minus. Odštejte 100\sqrt{65} od -700.
x=-5\sqrt{65}-35
Delite -700-100\sqrt{65} s/z 20.
x=5\sqrt{65}-35 x=-5\sqrt{65}-35
Enačba je zdaj rešena.
6000+700x+10x^{2}=10000
Uporabite lastnost distributivnosti za množenje 600+10x krat 10+x in kombiniranje pogojev podobnosti.
700x+10x^{2}=10000-6000
Odštejte 6000 na obeh straneh.
700x+10x^{2}=4000
Odštejte 6000 od 10000, da dobite 4000.
10x^{2}+700x=4000
Kvadratne enačbe, kot je ta, lahko rešite z dopolnjevanjem do popolnega kvadrata. Za dopolnjevanje do popolnega kvadrata morate enačbo najprej pretvoriti v obliko x^{2}+bx=c.
\frac{10x^{2}+700x}{10}=\frac{4000}{10}
Delite obe strani z vrednostjo 10.
x^{2}+\frac{700}{10}x=\frac{4000}{10}
Z deljenjem s/z 10 razveljavite množenje s/z 10.
x^{2}+70x=\frac{4000}{10}
Delite 700 s/z 10.
x^{2}+70x=400
Delite 4000 s/z 10.
x^{2}+70x+35^{2}=400+35^{2}
Delite 70, ki je koeficient člena x, z 2, da dobite 35. Nato dodajte kvadrat števila 35 na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
x^{2}+70x+1225=400+1225
Kvadrat števila 35.
x^{2}+70x+1225=1625
Seštejte 400 in 1225.
\left(x+35\right)^{2}=1625
Faktorizirajte x^{2}+70x+1225. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+35\right)^{2}}=\sqrt{1625}
Uporabite kvadratni koren obeh strani enačbe.
x+35=5\sqrt{65} x+35=-5\sqrt{65}
Poenostavite.
x=5\sqrt{65}-35 x=-5\sqrt{65}-35
Odštejte 35 na obeh straneh enačbe.