Rešitev za x
x = -\frac{14}{5} = -2\frac{4}{5} = -2,8
Graf
Delež
Kopirano v odložišče
x-\frac{\frac{2\times 3+1}{3}\left(-\frac{3\times 7+1}{7}\right)\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Pomnožite obe strani z vrednostjo -\frac{1}{3}.
x-\frac{\frac{6+1}{3}\left(-\frac{3\times 7+1}{7}\right)\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Pomnožite 2 in 3, da dobite 6.
x-\frac{\frac{7}{3}\left(-\frac{3\times 7+1}{7}\right)\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Seštejte 6 in 1, da dobite 7.
x-\frac{\frac{7}{3}\left(-\frac{21+1}{7}\right)\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Pomnožite 3 in 7, da dobite 21.
x-\frac{\frac{7}{3}\left(-\frac{22}{7}\right)\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Seštejte 21 in 1, da dobite 22.
x-\frac{\frac{7\left(-22\right)}{3\times 7}\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Pomnožite \frac{7}{3} s/z -\frac{22}{7} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
x-\frac{\frac{-22}{3}\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Okrajšaj 7 v števcu in imenovalcu.
x-\frac{-\frac{22}{3}\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Ulomek \frac{-22}{3} je mogoče drugače zapisati kot -\frac{22}{3} z ekstrahiranjem negativnega znaka.
x-\frac{-\frac{22}{3}\left(-\frac{22+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Pomnožite 2 in 11, da dobite 22.
x-\frac{-\frac{22}{3}\left(-\frac{24}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Seštejte 22 in 2, da dobite 24.
x-\frac{\frac{-22\left(-24\right)}{3\times 11}}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Pomnožite -\frac{22}{3} s/z -\frac{24}{11} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
x-\frac{\frac{528}{33}}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Izvedite množenja v ulomku \frac{-22\left(-24\right)}{3\times 11}.
x-\frac{16}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Delite 528 s/z 33, da dobite 16.
x-\frac{16}{\frac{9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Pomnožite 1 in 9, da dobite 9.
x-\frac{16}{\frac{10}{9}\left(-\frac{1\times 8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Seštejte 9 in 1, da dobite 10.
x-\frac{16}{\frac{10}{9}\left(-\frac{8+1}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Pomnožite 1 in 8, da dobite 8.
x-\frac{16}{\frac{10}{9}\left(-\frac{9}{8}\right)\times 16}=6\left(-\frac{1}{3}\right)
Seštejte 8 in 1, da dobite 9.
x-\frac{16}{\frac{10\left(-9\right)}{9\times 8}\times 16}=6\left(-\frac{1}{3}\right)
Pomnožite \frac{10}{9} s/z -\frac{9}{8} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
x-\frac{16}{\frac{-90}{72}\times 16}=6\left(-\frac{1}{3}\right)
Izvedite množenja v ulomku \frac{10\left(-9\right)}{9\times 8}.
x-\frac{16}{-\frac{5}{4}\times 16}=6\left(-\frac{1}{3}\right)
Zmanjšajte ulomek \frac{-90}{72} na najmanjši imenovalec tako, da izpeljete in okrajšate 18.
x-\frac{16}{\frac{-5\times 16}{4}}=6\left(-\frac{1}{3}\right)
Izrazite -\frac{5}{4}\times 16 kot enojni ulomek.
x-\frac{16}{\frac{-80}{4}}=6\left(-\frac{1}{3}\right)
Pomnožite -5 in 16, da dobite -80.
x-\frac{16}{-20}=6\left(-\frac{1}{3}\right)
Delite -80 s/z 4, da dobite -20.
x-\left(-\frac{4}{5}\right)=6\left(-\frac{1}{3}\right)
Zmanjšajte ulomek \frac{16}{-20} na najmanjši imenovalec tako, da izpeljete in okrajšate 4.
x+\frac{4}{5}=6\left(-\frac{1}{3}\right)
Nasprotna vrednost -\frac{4}{5} je \frac{4}{5}.
x+\frac{4}{5}=\frac{6\left(-1\right)}{3}
Izrazite 6\left(-\frac{1}{3}\right) kot enojni ulomek.
x+\frac{4}{5}=\frac{-6}{3}
Pomnožite 6 in -1, da dobite -6.
x+\frac{4}{5}=-2
Delite -6 s/z 3, da dobite -2.
x=-2-\frac{4}{5}
Odštejte \frac{4}{5} na obeh straneh.
x=-\frac{10}{5}-\frac{4}{5}
Pretvorite -2 v ulomek -\frac{10}{5}.
x=\frac{-10-4}{5}
Ker -\frac{10}{5} in \frac{4}{5} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
x=-\frac{14}{5}
Odštejte 4 od -10, da dobite -14.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}