Preskoči na glavno vsebino
Rešitev za x
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

x^{2}-4=3x+2
Razmislite o \left(x+2\right)\left(x-2\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrat števila 2.
x^{2}-4-3x=2
Odštejte 3x na obeh straneh.
x^{2}-4-3x-2=0
Odštejte 2 na obeh straneh.
x^{2}-6-3x=0
Odštejte 2 od -4, da dobite -6.
x^{2}-3x-6=0
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-6\right)}}{2}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 1 za a, -3 za b in -6 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-6\right)}}{2}
Kvadrat števila -3.
x=\frac{-\left(-3\right)±\sqrt{9+24}}{2}
Pomnožite -4 s/z -6.
x=\frac{-\left(-3\right)±\sqrt{33}}{2}
Seštejte 9 in 24.
x=\frac{3±\sqrt{33}}{2}
Nasprotna vrednost -3 je 3.
x=\frac{\sqrt{33}+3}{2}
Zdaj rešite enačbo x=\frac{3±\sqrt{33}}{2}, ko je ± plus. Seštejte 3 in \sqrt{33}.
x=\frac{3-\sqrt{33}}{2}
Zdaj rešite enačbo x=\frac{3±\sqrt{33}}{2}, ko je ± minus. Odštejte \sqrt{33} od 3.
x=\frac{\sqrt{33}+3}{2} x=\frac{3-\sqrt{33}}{2}
Enačba je zdaj rešena.
x^{2}-4=3x+2
Razmislite o \left(x+2\right)\left(x-2\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrat števila 2.
x^{2}-4-3x=2
Odštejte 3x na obeh straneh.
x^{2}-3x=2+4
Dodajte 4 na obe strani.
x^{2}-3x=6
Seštejte 2 in 4, da dobite 6.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=6+\left(-\frac{3}{2}\right)^{2}
Delite -3, ki je koeficient člena x, z 2, da dobite -\frac{3}{2}. Nato dodajte kvadrat števila -\frac{3}{2} na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
x^{2}-3x+\frac{9}{4}=6+\frac{9}{4}
Kvadrirajte ulomek -\frac{3}{2} tako, da kvadrirate števec in imenovalec ulomka.
x^{2}-3x+\frac{9}{4}=\frac{33}{4}
Seštejte 6 in \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{33}{4}
Faktorizirajte x^{2}-3x+\frac{9}{4}. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Uporabite kvadratni koren obeh strani enačbe.
x-\frac{3}{2}=\frac{\sqrt{33}}{2} x-\frac{3}{2}=-\frac{\sqrt{33}}{2}
Poenostavite.
x=\frac{\sqrt{33}+3}{2} x=\frac{3-\sqrt{33}}{2}
Prištejte \frac{3}{2} na obe strani enačbe.