Ovrednoti
8\left(a^{4}-b^{4}\right)
Razširi
8a^{4}-8b^{4}
Delež
Kopirano v odložišče
9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Uporabite binomski izrek \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, da razširite \left(3a^{2}-b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Če želite potenco potencirati z drugo potenco, pomnožite eksponente. Pomnožite 2 in 2, da dobite 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
Če želite potenco potencirati z drugo potenco, pomnožite eksponente. Pomnožite 2 in 2, da dobite 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Uporabite binomski izrek \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, da razširite \left(a^{2}-3b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Če želite potenco potencirati z drugo potenco, pomnožite eksponente. Pomnožite 2 in 2, da dobite 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
Če želite potenco potencirati z drugo potenco, pomnožite eksponente. Pomnožite 2 in 2, da dobite 4.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
Če želite poiskati nasprotno vrednost za a^{4}-6a^{2}b^{2}+9b^{4}, poiščite nasprotno vrednost vsakega izraza.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
Združite 9a^{4} in -a^{4}, da dobite 8a^{4}.
8a^{4}+b^{4}-9b^{4}
Združite -6a^{2}b^{2} in 6a^{2}b^{2}, da dobite 0.
8a^{4}-8b^{4}
Združite b^{4} in -9b^{4}, da dobite -8b^{4}.
9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Uporabite binomski izrek \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, da razširite \left(3a^{2}-b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Če želite potenco potencirati z drugo potenco, pomnožite eksponente. Pomnožite 2 in 2, da dobite 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
Če želite potenco potencirati z drugo potenco, pomnožite eksponente. Pomnožite 2 in 2, da dobite 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Uporabite binomski izrek \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, da razširite \left(a^{2}-3b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Če želite potenco potencirati z drugo potenco, pomnožite eksponente. Pomnožite 2 in 2, da dobite 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
Če želite potenco potencirati z drugo potenco, pomnožite eksponente. Pomnožite 2 in 2, da dobite 4.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
Če želite poiskati nasprotno vrednost za a^{4}-6a^{2}b^{2}+9b^{4}, poiščite nasprotno vrednost vsakega izraza.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
Združite 9a^{4} in -a^{4}, da dobite 8a^{4}.
8a^{4}+b^{4}-9b^{4}
Združite -6a^{2}b^{2} in 6a^{2}b^{2}, da dobite 0.
8a^{4}-8b^{4}
Združite b^{4} in -9b^{4}, da dobite -8b^{4}.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}