Preskoči na glavno vsebino
Rešitev za x
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Spremenljivka x ne more biti enaka nobeni od vrednosti -3,-1, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe z 4\left(x+1\right)\left(x+3\right), najmanjšim skupnim mnogokratnikom števila x+3,4\left(x^{2}+4x+3\right).
\left(x^{2}+4x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Uporabite lastnost distributivnosti za množenje x+1 krat x+3 in kombiniranje pogojev podobnosti.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Uporabite lastnost distributivnosti za množenje x^{2}+4x+3 krat x-2 in kombiniranje pogojev podobnosti.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Faktorizirajte x^{2}-x-2.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite 3 s/z \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} in \frac{7x-5}{\left(x-2\right)\left(x+1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+3x-6x-6+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Izvedi množenje v 3\left(x-2\right)\left(x+1\right)+7x-5.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Združite podobne člene v 3x^{2}+3x-6x-6+7x-5.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-2\right)\left(x+1\right) in x+1 je \left(x-2\right)\left(x+1\right). Pomnožite \frac{3x}{x+1} s/z \frac{x-2}{x-2}.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
Ker \frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)} in \frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x^{2}+6x}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
Izvedi množenje v 3x^{2}+4x-11-3x\left(x-2\right).
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
Združite podobne člene v 3x^{2}+4x-11-3x^{2}+6x.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
Izrazite \left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)} kot enojni ulomek.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+20x+20=9x^{2}+43x+8
Uporabite distributivnost, da pomnožite 4x+4 s/z 5.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite 20x+20 s/z \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)} in \frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Izvedi množenje v \left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right).
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Združite podobne člene v 10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}=9x^{2}+43x+8
Uporabite lastnost distributivnosti za množenje x-2 krat x+1 in kombiniranje pogojev podobnosti.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}-9x^{2}=43x+8
Odštejte 9x^{2} na obeh straneh.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-9x^{2}=43x+8
Faktorizirajte x^{2}-x-2.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite -9x^{2} s/z \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} in \frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}}{\left(x-2\right)\left(x+1\right)}=43x+8
Izvedi množenje v 10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right).
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=43x+8
Združite podobne člene v 10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
Odštejte 43x na obeh straneh.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{x^{2}-x-2}-43x=8
Uporabite lastnost distributivnosti za množenje x-2 krat x+1 in kombiniranje pogojev podobnosti.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
Faktorizirajte x^{2}-x-2.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite -43x s/z \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} in \frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x}{\left(x-2\right)\left(x+1\right)}=8
Izvedi množenje v x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right).
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}=8
Združite podobne člene v x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
Odštejte 8 na obeh straneh.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{x^{2}-x-2}-8=0
Uporabite lastnost distributivnosti za množenje x-2 krat x+1 in kombiniranje pogojev podobnosti.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
Faktorizirajte x^{2}-x-2.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-\frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite 8 s/z \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
Ker \frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)} in \frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16}{\left(x-2\right)\left(x+1\right)}=0
Izvedi množenje v x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right).
\frac{x^{4}-5x^{3}-19x^{2}+29x+42}{\left(x-2\right)\left(x+1\right)}=0
Združite podobne člene v x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16.
x^{4}-5x^{3}-19x^{2}+29x+42=0
Spremenljivka x ne more biti enaka nobeni od vrednosti -1,2, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe s/z \left(x-2\right)\left(x+1\right).
±42,±21,±14,±7,±6,±3,±2,±1
Po Množica racionalnih števil korenu izrek je vse Množica racionalnih števil korenov polinoma v obrazcu \frac{p}{q}, kjer p deli izraz konstante 42 in q deli vodilni koeficient 1. Seznam vseh kandidatov \frac{p}{q}.
x=-1
Poiščite tak koren tako, da preizkusite vse cele vrednosti tako, da začnete z najmanjšo, po absolutni vrednosti. Če ni mogoče najti nobenega celega korena, poizkusite z ulomki.
x^{3}-6x^{2}-13x+42=0
Po izrek, x-k je faktor polinoma za vsak korenski k. Delite x^{4}-5x^{3}-19x^{2}+29x+42 s/z x+1, da dobite x^{3}-6x^{2}-13x+42. Razrešite enačbo, kjer je rezultat enak 0.
±42,±21,±14,±7,±6,±3,±2,±1
Po Množica racionalnih števil korenu izrek je vse Množica racionalnih števil korenov polinoma v obrazcu \frac{p}{q}, kjer p deli izraz konstante 42 in q deli vodilni koeficient 1. Seznam vseh kandidatov \frac{p}{q}.
x=2
Poiščite tak koren tako, da preizkusite vse cele vrednosti tako, da začnete z najmanjšo, po absolutni vrednosti. Če ni mogoče najti nobenega celega korena, poizkusite z ulomki.
x^{2}-4x-21=0
Po izrek, x-k je faktor polinoma za vsak korenski k. Delite x^{3}-6x^{2}-13x+42 s/z x-2, da dobite x^{2}-4x-21. Razrešite enačbo, kjer je rezultat enak 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-21\right)}}{2}
Vse enačbe oblike ax^{2}+bx+c=0 je mogoče rešiti s kvadratno enačbo: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Nadomestek 1 za a, -4 za b, in -21 za c v kvadratni enačbi.
x=\frac{4±10}{2}
Izvedi izračune.
x=-3 x=7
Rešite enačbo x^{2}-4x-21=0, če je ± plus in če je ± minus.
x=7
Odstranite vrednosti, katerih spremenljivka ne more biti enaka.
x=-1 x=2 x=-3 x=7
Seznam vseh najdenih rešitev.
x=7
Spremenljivka x ne more biti enaka nobeni od vrednosti -1,2,-3.