Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{\left(\frac{x}{x}-\frac{2}{x}\right)^{2}}{\frac{x^{2}-4x+4}{x^{2}-4}}-\frac{x+4}{x+2}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite 1 s/z \frac{x}{x}.
\frac{\left(\frac{x-2}{x}\right)^{2}}{\frac{x^{2}-4x+4}{x^{2}-4}}-\frac{x+4}{x+2}
Ker \frac{x}{x} in \frac{2}{x} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{\left(x-2\right)^{2}}{x^{2}}}{\frac{x^{2}-4x+4}{x^{2}-4}}-\frac{x+4}{x+2}
Če želite dobiti potenco vrednosti \frac{x-2}{x}, potencirajte števec in imenovalec, nato pa delite.
\frac{\frac{\left(x-2\right)^{2}}{x^{2}}}{\frac{\left(x-2\right)^{2}}{\left(x-2\right)\left(x+2\right)}}-\frac{x+4}{x+2}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{x^{2}-4x+4}{x^{2}-4}.
\frac{\frac{\left(x-2\right)^{2}}{x^{2}}}{\frac{x-2}{x+2}}-\frac{x+4}{x+2}
Okrajšaj x-2 v števcu in imenovalcu.
\frac{\left(x-2\right)^{2}\left(x+2\right)}{x^{2}\left(x-2\right)}-\frac{x+4}{x+2}
Delite \frac{\left(x-2\right)^{2}}{x^{2}} s/z \frac{x-2}{x+2} tako, da pomnožite \frac{\left(x-2\right)^{2}}{x^{2}} z obratno vrednostjo \frac{x-2}{x+2}.
\frac{\left(x-2\right)\left(x+2\right)}{x^{2}}-\frac{x+4}{x+2}
Okrajšaj x-2 v števcu in imenovalcu.
\frac{\left(x-2\right)\left(x+2\right)\left(x+2\right)}{\left(x+2\right)x^{2}}-\frac{\left(x+4\right)x^{2}}{\left(x+2\right)x^{2}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x^{2} in x+2 je \left(x+2\right)x^{2}. Pomnožite \frac{\left(x-2\right)\left(x+2\right)}{x^{2}} s/z \frac{x+2}{x+2}. Pomnožite \frac{x+4}{x+2} s/z \frac{x^{2}}{x^{2}}.
\frac{\left(x-2\right)\left(x+2\right)\left(x+2\right)-\left(x+4\right)x^{2}}{\left(x+2\right)x^{2}}
Ker \frac{\left(x-2\right)\left(x+2\right)\left(x+2\right)}{\left(x+2\right)x^{2}} in \frac{\left(x+4\right)x^{2}}{\left(x+2\right)x^{2}} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{x^{3}+4x^{2}+4x-2x^{2}-8x-8-x^{3}-4x^{2}}{\left(x+2\right)x^{2}}
Izvedi množenje v \left(x-2\right)\left(x+2\right)\left(x+2\right)-\left(x+4\right)x^{2}.
\frac{-2x^{2}-4x-8}{\left(x+2\right)x^{2}}
Združite podobne člene v x^{3}+4x^{2}+4x-2x^{2}-8x-8-x^{3}-4x^{2}.
\frac{-2x^{2}-4x-8}{x^{3}+2x^{2}}
Razčlenite \left(x+2\right)x^{2}.
\frac{\left(\frac{x}{x}-\frac{2}{x}\right)^{2}}{\frac{x^{2}-4x+4}{x^{2}-4}}-\frac{x+4}{x+2}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite 1 s/z \frac{x}{x}.
\frac{\left(\frac{x-2}{x}\right)^{2}}{\frac{x^{2}-4x+4}{x^{2}-4}}-\frac{x+4}{x+2}
Ker \frac{x}{x} in \frac{2}{x} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{\left(x-2\right)^{2}}{x^{2}}}{\frac{x^{2}-4x+4}{x^{2}-4}}-\frac{x+4}{x+2}
Če želite dobiti potenco vrednosti \frac{x-2}{x}, potencirajte števec in imenovalec, nato pa delite.
\frac{\frac{\left(x-2\right)^{2}}{x^{2}}}{\frac{\left(x-2\right)^{2}}{\left(x-2\right)\left(x+2\right)}}-\frac{x+4}{x+2}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{x^{2}-4x+4}{x^{2}-4}.
\frac{\frac{\left(x-2\right)^{2}}{x^{2}}}{\frac{x-2}{x+2}}-\frac{x+4}{x+2}
Okrajšaj x-2 v števcu in imenovalcu.
\frac{\left(x-2\right)^{2}\left(x+2\right)}{x^{2}\left(x-2\right)}-\frac{x+4}{x+2}
Delite \frac{\left(x-2\right)^{2}}{x^{2}} s/z \frac{x-2}{x+2} tako, da pomnožite \frac{\left(x-2\right)^{2}}{x^{2}} z obratno vrednostjo \frac{x-2}{x+2}.
\frac{\left(x-2\right)\left(x+2\right)}{x^{2}}-\frac{x+4}{x+2}
Okrajšaj x-2 v števcu in imenovalcu.
\frac{\left(x-2\right)\left(x+2\right)\left(x+2\right)}{\left(x+2\right)x^{2}}-\frac{\left(x+4\right)x^{2}}{\left(x+2\right)x^{2}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x^{2} in x+2 je \left(x+2\right)x^{2}. Pomnožite \frac{\left(x-2\right)\left(x+2\right)}{x^{2}} s/z \frac{x+2}{x+2}. Pomnožite \frac{x+4}{x+2} s/z \frac{x^{2}}{x^{2}}.
\frac{\left(x-2\right)\left(x+2\right)\left(x+2\right)-\left(x+4\right)x^{2}}{\left(x+2\right)x^{2}}
Ker \frac{\left(x-2\right)\left(x+2\right)\left(x+2\right)}{\left(x+2\right)x^{2}} in \frac{\left(x+4\right)x^{2}}{\left(x+2\right)x^{2}} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{x^{3}+4x^{2}+4x-2x^{2}-8x-8-x^{3}-4x^{2}}{\left(x+2\right)x^{2}}
Izvedi množenje v \left(x-2\right)\left(x+2\right)\left(x+2\right)-\left(x+4\right)x^{2}.
\frac{-2x^{2}-4x-8}{\left(x+2\right)x^{2}}
Združite podobne člene v x^{3}+4x^{2}+4x-2x^{2}-8x-8-x^{3}-4x^{2}.
\frac{-2x^{2}-4x-8}{x^{3}+2x^{2}}
Razčlenite \left(x+2\right)x^{2}.