Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x+1 in x-2 je \left(x-2\right)\left(x+1\right). Pomnožite \frac{x-2}{x+1} s/z \frac{x-2}{x-2}. Pomnožite \frac{5-x}{x-2} s/z \frac{x+1}{x+1}.
\frac{\frac{\left(x-2\right)\left(x-2\right)+\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} in \frac{\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{\frac{x^{2}-2x-2x+4+5x+5-x^{2}-x}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Izvedi množenje v \left(x-2\right)\left(x-2\right)+\left(5-x\right)\left(x+1\right).
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Združite podobne člene v x^{2}-2x-2x+4+5x+5-x^{2}-x.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Faktorizirajte x^{2}-x-2. Faktorizirajte x^{2}+3x+2.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-2\right)\left(x+1\right) in \left(x+1\right)\left(x+2\right) je \left(x-2\right)\left(x+1\right)\left(x+2\right). Pomnožite \frac{1}{\left(x-2\right)\left(x+1\right)} s/z \frac{x+2}{x+2}. Pomnožite \frac{1}{\left(x+1\right)\left(x+2\right)} s/z \frac{x-2}{x-2}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2-\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Ker \frac{x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} in \frac{x-2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2-x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Izvedi množenje v x+2-\left(x-2\right).
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Združite podobne člene v x+2-x+2.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x\left(x+1\right)}\right)}
Faktorizirajte x^{2}+x.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)}+\frac{3-x^{2}}{x\left(x+1\right)}\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x in x\left(x+1\right) je x\left(x+1\right). Pomnožite \frac{x+1}{x} s/z \frac{x+1}{x+1}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{\left(x+1\right)\left(x+1\right)+3-x^{2}}{x\left(x+1\right)}}
\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)} in \frac{3-x^{2}}{x\left(x+1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{x^{2}+x+1+x+3-x^{2}}{x\left(x+1\right)}}
Izvedi množenje v \left(x+1\right)\left(x+1\right)+3-x^{2}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{2x+4}{x\left(x+1\right)}}
Združite podobne člene v x^{2}+x+1+x+3-x^{2}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}}
Pomnožite \frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} s/z \frac{2x+4}{x\left(x+1\right)} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{9\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\times 4\left(2x+4\right)}
Delite \frac{9}{\left(x-2\right)\left(x+1\right)} s/z \frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)} tako, da pomnožite \frac{9}{\left(x-2\right)\left(x+1\right)} z obratno vrednostjo \frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}.
\frac{9x\left(x+1\right)\left(x+2\right)}{4\left(2x+4\right)}
Okrajšaj \left(x-2\right)\left(x+1\right) v števcu in imenovalcu.
\frac{9x\left(x+1\right)\left(x+2\right)}{2\times 4\left(x+2\right)}
Faktorizirajte izraze, ki še niso faktorizirani.
\frac{9x\left(x+1\right)}{2\times 4}
Okrajšaj x+2 v števcu in imenovalcu.
\frac{9x^{2}+9x}{8}
Razširite izraz.
\frac{\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x+1 in x-2 je \left(x-2\right)\left(x+1\right). Pomnožite \frac{x-2}{x+1} s/z \frac{x-2}{x-2}. Pomnožite \frac{5-x}{x-2} s/z \frac{x+1}{x+1}.
\frac{\frac{\left(x-2\right)\left(x-2\right)+\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} in \frac{\left(5-x\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{\frac{x^{2}-2x-2x+4+5x+5-x^{2}-x}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Izvedi množenje v \left(x-2\right)\left(x-2\right)+\left(5-x\right)\left(x+1\right).
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{x^{2}-x-2}-\frac{1}{x^{2}+3x+2}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Združite podobne člene v x^{2}-2x-2x+4+5x+5-x^{2}-x.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{1}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Faktorizirajte x^{2}-x-2. Faktorizirajte x^{2}+3x+2.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\left(\frac{x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\right)\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-2\right)\left(x+1\right) in \left(x+1\right)\left(x+2\right) je \left(x-2\right)\left(x+1\right)\left(x+2\right). Pomnožite \frac{1}{\left(x-2\right)\left(x+1\right)} s/z \frac{x+2}{x+2}. Pomnožite \frac{1}{\left(x+1\right)\left(x+2\right)} s/z \frac{x-2}{x-2}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2-\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Ker \frac{x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} in \frac{x-2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2-x+2}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Izvedi množenje v x+2-\left(x-2\right).
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x^{2}+x}\right)}
Združite podobne člene v x+2-x+2.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{x+1}{x}+\frac{3-x^{2}}{x\left(x+1\right)}\right)}
Faktorizirajte x^{2}+x.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\left(\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)}+\frac{3-x^{2}}{x\left(x+1\right)}\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x in x\left(x+1\right) je x\left(x+1\right). Pomnožite \frac{x+1}{x} s/z \frac{x+1}{x+1}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{\left(x+1\right)\left(x+1\right)+3-x^{2}}{x\left(x+1\right)}}
\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)} in \frac{3-x^{2}}{x\left(x+1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{x^{2}+x+1+x+3-x^{2}}{x\left(x+1\right)}}
Izvedi množenje v \left(x+1\right)\left(x+1\right)+3-x^{2}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}\times \frac{2x+4}{x\left(x+1\right)}}
Združite podobne člene v x^{2}+x+1+x+3-x^{2}.
\frac{\frac{9}{\left(x-2\right)\left(x+1\right)}}{\frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}}
Pomnožite \frac{4}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} s/z \frac{2x+4}{x\left(x+1\right)} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{9\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\times 4\left(2x+4\right)}
Delite \frac{9}{\left(x-2\right)\left(x+1\right)} s/z \frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)} tako, da pomnožite \frac{9}{\left(x-2\right)\left(x+1\right)} z obratno vrednostjo \frac{4\left(2x+4\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)x\left(x+1\right)}.
\frac{9x\left(x+1\right)\left(x+2\right)}{4\left(2x+4\right)}
Okrajšaj \left(x-2\right)\left(x+1\right) v števcu in imenovalcu.
\frac{9x\left(x+1\right)\left(x+2\right)}{2\times 4\left(x+2\right)}
Faktorizirajte izraze, ki še niso faktorizirani.
\frac{9x\left(x+1\right)}{2\times 4}
Okrajšaj x+2 v števcu in imenovalcu.
\frac{9x^{2}+9x}{8}
Razširite izraz.