Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{\frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x-1 in x+1 je \left(x-1\right)\left(x+1\right). Pomnožite \frac{3x}{x-1} s/z \frac{x+1}{x+1}. Pomnožite \frac{x}{x+1} s/z \frac{x-1}{x-1}.
\frac{\frac{3x\left(x+1\right)-x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Ker \frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} in \frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{3x^{2}+3x-x^{2}+x}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Izvedi množenje v 3x\left(x+1\right)-x\left(x-1\right).
\frac{\frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Združite podobne člene v 3x^{2}+3x-x^{2}+x.
\frac{\left(2x^{2}+4x\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x}
Delite \frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)} s/z \frac{x}{x^{2}-1} tako, da pomnožite \frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)} z obratno vrednostjo \frac{x}{x^{2}-1}.
\frac{2x\left(x-1\right)\left(x+1\right)\left(x+2\right)}{x\left(x-1\right)\left(x+1\right)}
Faktorizirajte izraze, ki še niso faktorizirani.
2\left(x+2\right)
Okrajšaj x\left(x-1\right)\left(x+1\right) v števcu in imenovalcu.
2x+4
Razširite izraz.
\frac{\frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x-1 in x+1 je \left(x-1\right)\left(x+1\right). Pomnožite \frac{3x}{x-1} s/z \frac{x+1}{x+1}. Pomnožite \frac{x}{x+1} s/z \frac{x-1}{x-1}.
\frac{\frac{3x\left(x+1\right)-x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Ker \frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} in \frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{3x^{2}+3x-x^{2}+x}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Izvedi množenje v 3x\left(x+1\right)-x\left(x-1\right).
\frac{\frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
Združite podobne člene v 3x^{2}+3x-x^{2}+x.
\frac{\left(2x^{2}+4x\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x}
Delite \frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)} s/z \frac{x}{x^{2}-1} tako, da pomnožite \frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)} z obratno vrednostjo \frac{x}{x^{2}-1}.
\frac{2x\left(x-1\right)\left(x+1\right)\left(x+2\right)}{x\left(x-1\right)\left(x+1\right)}
Faktorizirajte izraze, ki še niso faktorizirani.
2\left(x+2\right)
Okrajšaj x\left(x-1\right)\left(x+1\right) v števcu in imenovalcu.
2x+4
Razširite izraz.