Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x+1 in x-1 je \left(x-1\right)\left(x+1\right). Pomnožite \frac{1}{x+1} s/z \frac{x-1}{x-1}. Pomnožite \frac{1}{x-1} s/z \frac{x+1}{x+1}.
\frac{\frac{x-1-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Ker \frac{x-1}{\left(x-1\right)\left(x+1\right)} in \frac{x+1}{\left(x-1\right)\left(x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{x-1-x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Izvedi množenje v x-1-\left(x+1\right).
\frac{\frac{-2}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Združite podobne člene v x-1-x-1.
\frac{-2\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\times 2}
Delite \frac{-2}{\left(x-1\right)\left(x+1\right)} s/z \frac{2}{1-x} tako, da pomnožite \frac{-2}{\left(x-1\right)\left(x+1\right)} z obratno vrednostjo \frac{2}{1-x}.
\frac{-2\left(-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Ekstrahirajte znak minus v 1-x.
\frac{-\left(-1\right)}{x+1}
Okrajšaj 2\left(x-1\right) v števcu in imenovalcu.
\frac{1}{x+1}
Pomnožite -1 in -1, da dobite 1.
\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x+1 in x-1 je \left(x-1\right)\left(x+1\right). Pomnožite \frac{1}{x+1} s/z \frac{x-1}{x-1}. Pomnožite \frac{1}{x-1} s/z \frac{x+1}{x+1}.
\frac{\frac{x-1-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Ker \frac{x-1}{\left(x-1\right)\left(x+1\right)} in \frac{x+1}{\left(x-1\right)\left(x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{x-1-x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Izvedi množenje v x-1-\left(x+1\right).
\frac{\frac{-2}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Združite podobne člene v x-1-x-1.
\frac{-2\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\times 2}
Delite \frac{-2}{\left(x-1\right)\left(x+1\right)} s/z \frac{2}{1-x} tako, da pomnožite \frac{-2}{\left(x-1\right)\left(x+1\right)} z obratno vrednostjo \frac{2}{1-x}.
\frac{-2\left(-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Ekstrahirajte znak minus v 1-x.
\frac{-\left(-1\right)}{x+1}
Okrajšaj 2\left(x-1\right) v števcu in imenovalcu.
\frac{1}{x+1}
Pomnožite -1 in -1, da dobite 1.