Ovrednoti
\frac{1}{x+1}
Razširi
\frac{1}{x+1}
Graf
Delež
Kopirano v odložišče
\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x+1 in x-1 je \left(x-1\right)\left(x+1\right). Pomnožite \frac{1}{x+1} s/z \frac{x-1}{x-1}. Pomnožite \frac{1}{x-1} s/z \frac{x+1}{x+1}.
\frac{\frac{x-1-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Ker \frac{x-1}{\left(x-1\right)\left(x+1\right)} in \frac{x+1}{\left(x-1\right)\left(x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{x-1-x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Izvedi množenje v x-1-\left(x+1\right).
\frac{\frac{-2}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Združite podobne člene v x-1-x-1.
\frac{-2\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\times 2}
Delite \frac{-2}{\left(x-1\right)\left(x+1\right)} s/z \frac{2}{1-x} tako, da pomnožite \frac{-2}{\left(x-1\right)\left(x+1\right)} z obratno vrednostjo \frac{2}{1-x}.
\frac{-2\left(-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Ekstrahirajte znak minus v 1-x.
\frac{-\left(-1\right)}{x+1}
Okrajšaj 2\left(x-1\right) v števcu in imenovalcu.
\frac{1}{x+1}
Pomnožite -1 in -1, da dobite 1.
\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x+1 in x-1 je \left(x-1\right)\left(x+1\right). Pomnožite \frac{1}{x+1} s/z \frac{x-1}{x-1}. Pomnožite \frac{1}{x-1} s/z \frac{x+1}{x+1}.
\frac{\frac{x-1-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Ker \frac{x-1}{\left(x-1\right)\left(x+1\right)} in \frac{x+1}{\left(x-1\right)\left(x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{x-1-x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Izvedi množenje v x-1-\left(x+1\right).
\frac{\frac{-2}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Združite podobne člene v x-1-x-1.
\frac{-2\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\times 2}
Delite \frac{-2}{\left(x-1\right)\left(x+1\right)} s/z \frac{2}{1-x} tako, da pomnožite \frac{-2}{\left(x-1\right)\left(x+1\right)} z obratno vrednostjo \frac{2}{1-x}.
\frac{-2\left(-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Ekstrahirajte znak minus v 1-x.
\frac{-\left(-1\right)}{x+1}
Okrajšaj 2\left(x-1\right) v števcu in imenovalcu.
\frac{1}{x+1}
Pomnožite -1 in -1, da dobite 1.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}