Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\frac{1}{2}x\times \frac{1}{2}x+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y\times \frac{2}{3}y-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Uporabite distributivnost tako, da pomnožite vsako vrednost \frac{1}{2}x-\frac{2}{3}y+\frac{3}{4} z vsako vrednostjo \frac{1}{2}x+\frac{2}{3}y-\frac{3}{4}.
\frac{1}{2}x^{2}\times \frac{1}{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y\times \frac{2}{3}y-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite x in x, da dobite x^{2}.
\frac{1}{2}x^{2}\times \frac{1}{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite y in y, da dobite y^{2}.
\frac{1\times 1}{2\times 2}x^{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite \frac{1}{2} s/z \frac{1}{2} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Izvedite množenja v ulomku \frac{1\times 1}{2\times 2}.
\frac{1}{4}x^{2}+\frac{1\times 2}{2\times 3}xy+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite \frac{1}{2} s/z \frac{2}{3} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Okrajšaj 2 v števcu in imenovalcu.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{1\left(-3\right)}{2\times 4}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite \frac{1}{2} s/z -\frac{3}{4} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{-3}{8}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Izvedite množenja v ulomku \frac{1\left(-3\right)}{2\times 4}.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Ulomek \frac{-3}{8} je mogoče drugače zapisati kot -\frac{3}{8} z ekstrahiranjem negativnega znaka.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x+\frac{-2}{3\times 2}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite -\frac{2}{3} s/z \frac{1}{2} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x+\frac{-2}{6}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Izvedite množenja v ulomku \frac{-2}{3\times 2}.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x-\frac{1}{3}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Zmanjšajte ulomek \frac{-2}{6} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Združite \frac{1}{3}xy in -\frac{1}{3}yx, da dobite 0.
\frac{1}{4}x^{2}-\frac{3}{8}x+\frac{-2\times 2}{3\times 3}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite -\frac{2}{3} s/z \frac{2}{3} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}-\frac{3}{8}x+\frac{-4}{9}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Izvedite množenja v ulomku \frac{-2\times 2}{3\times 3}.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Ulomek \frac{-4}{9} je mogoče drugače zapisati kot -\frac{4}{9} z ekstrahiranjem negativnega znaka.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{-2\left(-3\right)}{3\times 4}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite -\frac{2}{3} s/z -\frac{3}{4} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{6}{12}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Izvedite množenja v ulomku \frac{-2\left(-3\right)}{3\times 4}.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Zmanjšajte ulomek \frac{6}{12} na najmanjši imenovalec tako, da izpeljete in okrajšate 6.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3\times 1}{4\times 2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite \frac{3}{4} s/z \frac{1}{2} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{8}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Izvedite množenja v ulomku \frac{3\times 1}{4\times 2}.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Združite -\frac{3}{8}x in \frac{3}{8}x, da dobite 0.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3\times 2}{4\times 3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite \frac{3}{4} s/z \frac{2}{3} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{2}{4}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Okrajšaj 3 v števcu in imenovalcu.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{1}{2}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Zmanjšajte ulomek \frac{2}{4} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{3}{4}\left(-\frac{3}{4}\right)
Združite \frac{1}{2}y in \frac{1}{2}y, da dobite y.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{3\left(-3\right)}{4\times 4}
Pomnožite \frac{3}{4} s/z -\frac{3}{4} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{-9}{16}
Izvedite množenja v ulomku \frac{3\left(-3\right)}{4\times 4}.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y-\frac{9}{16}
Ulomek \frac{-9}{16} je mogoče drugače zapisati kot -\frac{9}{16} z ekstrahiranjem negativnega znaka.
\frac{1}{2}x\times \frac{1}{2}x+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y\times \frac{2}{3}y-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Uporabite distributivnost tako, da pomnožite vsako vrednost \frac{1}{2}x-\frac{2}{3}y+\frac{3}{4} z vsako vrednostjo \frac{1}{2}x+\frac{2}{3}y-\frac{3}{4}.
\frac{1}{2}x^{2}\times \frac{1}{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y\times \frac{2}{3}y-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite x in x, da dobite x^{2}.
\frac{1}{2}x^{2}\times \frac{1}{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite y in y, da dobite y^{2}.
\frac{1\times 1}{2\times 2}x^{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite \frac{1}{2} s/z \frac{1}{2} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Izvedite množenja v ulomku \frac{1\times 1}{2\times 2}.
\frac{1}{4}x^{2}+\frac{1\times 2}{2\times 3}xy+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite \frac{1}{2} s/z \frac{2}{3} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Okrajšaj 2 v števcu in imenovalcu.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{1\left(-3\right)}{2\times 4}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite \frac{1}{2} s/z -\frac{3}{4} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{-3}{8}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Izvedite množenja v ulomku \frac{1\left(-3\right)}{2\times 4}.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Ulomek \frac{-3}{8} je mogoče drugače zapisati kot -\frac{3}{8} z ekstrahiranjem negativnega znaka.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x+\frac{-2}{3\times 2}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite -\frac{2}{3} s/z \frac{1}{2} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x+\frac{-2}{6}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Izvedite množenja v ulomku \frac{-2}{3\times 2}.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x-\frac{1}{3}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Zmanjšajte ulomek \frac{-2}{6} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Združite \frac{1}{3}xy in -\frac{1}{3}yx, da dobite 0.
\frac{1}{4}x^{2}-\frac{3}{8}x+\frac{-2\times 2}{3\times 3}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite -\frac{2}{3} s/z \frac{2}{3} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}-\frac{3}{8}x+\frac{-4}{9}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Izvedite množenja v ulomku \frac{-2\times 2}{3\times 3}.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Ulomek \frac{-4}{9} je mogoče drugače zapisati kot -\frac{4}{9} z ekstrahiranjem negativnega znaka.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{-2\left(-3\right)}{3\times 4}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite -\frac{2}{3} s/z -\frac{3}{4} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{6}{12}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Izvedite množenja v ulomku \frac{-2\left(-3\right)}{3\times 4}.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Zmanjšajte ulomek \frac{6}{12} na najmanjši imenovalec tako, da izpeljete in okrajšate 6.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3\times 1}{4\times 2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite \frac{3}{4} s/z \frac{1}{2} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{8}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Izvedite množenja v ulomku \frac{3\times 1}{4\times 2}.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Združite -\frac{3}{8}x in \frac{3}{8}x, da dobite 0.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3\times 2}{4\times 3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Pomnožite \frac{3}{4} s/z \frac{2}{3} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{2}{4}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Okrajšaj 3 v števcu in imenovalcu.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{1}{2}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Zmanjšajte ulomek \frac{2}{4} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{3}{4}\left(-\frac{3}{4}\right)
Združite \frac{1}{2}y in \frac{1}{2}y, da dobite y.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{3\left(-3\right)}{4\times 4}
Pomnožite \frac{3}{4} s/z -\frac{3}{4} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{-9}{16}
Izvedite množenja v ulomku \frac{3\left(-3\right)}{4\times 4}.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y-\frac{9}{16}
Ulomek \frac{-9}{16} je mogoče drugače zapisati kot -\frac{9}{16} z ekstrahiranjem negativnega znaka.