Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{\frac{x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 1-x in 1+x je \left(x+1\right)\left(-x+1\right). Pomnožite \frac{1}{1-x} s/z \frac{x+1}{x+1}. Pomnožite \frac{1}{1+x} s/z \frac{-x+1}{-x+1}.
\frac{\frac{x+1-\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Ker \frac{x+1}{\left(x+1\right)\left(-x+1\right)} in \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{x+1+x-1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Izvedi množenje v x+1-\left(-x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Združite podobne člene v x+1+x-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+x}
Faktorizirajte x^{2}-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite x s/z \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
\frac{x}{\left(x-1\right)\left(x+1\right)} in \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)}}
Izvedi množenje v x+x\left(x-1\right)\left(x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}
Združite podobne člene v x+x^{3}+x^{2}-x^{2}-x.
\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Delite \frac{2x}{\left(x+1\right)\left(-x+1\right)} s/z \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} tako, da pomnožite \frac{2x}{\left(x+1\right)\left(-x+1\right)} z obratno vrednostjo \frac{x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-2x\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Ekstrahirajte znak minus v x-1.
\frac{-2}{x^{2}}
Okrajšaj x\left(x+1\right)\left(-x+1\right) v števcu in imenovalcu.
\frac{\frac{x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 1-x in 1+x je \left(x+1\right)\left(-x+1\right). Pomnožite \frac{1}{1-x} s/z \frac{x+1}{x+1}. Pomnožite \frac{1}{1+x} s/z \frac{-x+1}{-x+1}.
\frac{\frac{x+1-\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Ker \frac{x+1}{\left(x+1\right)\left(-x+1\right)} in \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{x+1+x-1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Izvedi množenje v x+1-\left(-x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Združite podobne člene v x+1+x-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+x}
Faktorizirajte x^{2}-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite x s/z \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
\frac{x}{\left(x-1\right)\left(x+1\right)} in \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)}}
Izvedi množenje v x+x\left(x-1\right)\left(x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}
Združite podobne člene v x+x^{3}+x^{2}-x^{2}-x.
\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Delite \frac{2x}{\left(x+1\right)\left(-x+1\right)} s/z \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} tako, da pomnožite \frac{2x}{\left(x+1\right)\left(-x+1\right)} z obratno vrednostjo \frac{x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-2x\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Ekstrahirajte znak minus v x-1.
\frac{-2}{x^{2}}
Okrajšaj x\left(x+1\right)\left(-x+1\right) v števcu in imenovalcu.