Ovrednoti
-\frac{2}{x^{2}}
Razširi
-\frac{2}{x^{2}}
Graf
Delež
Kopirano v odložišče
\frac{\frac{x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 1-x in 1+x je \left(x+1\right)\left(-x+1\right). Pomnožite \frac{1}{1-x} s/z \frac{x+1}{x+1}. Pomnožite \frac{1}{1+x} s/z \frac{-x+1}{-x+1}.
\frac{\frac{x+1-\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Ker \frac{x+1}{\left(x+1\right)\left(-x+1\right)} in \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{x+1+x-1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Izvedi množenje v x+1-\left(-x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Združite podobne člene v x+1+x-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+x}
Faktorizirajte x^{2}-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite x s/z \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
\frac{x}{\left(x-1\right)\left(x+1\right)} in \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)}}
Izvedi množenje v x+x\left(x-1\right)\left(x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}
Združite podobne člene v x+x^{3}+x^{2}-x^{2}-x.
\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Delite \frac{2x}{\left(x+1\right)\left(-x+1\right)} s/z \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} tako, da pomnožite \frac{2x}{\left(x+1\right)\left(-x+1\right)} z obratno vrednostjo \frac{x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-2x\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Ekstrahirajte znak minus v x-1.
\frac{-2}{x^{2}}
Okrajšaj x\left(x+1\right)\left(-x+1\right) v števcu in imenovalcu.
\frac{\frac{x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 1-x in 1+x je \left(x+1\right)\left(-x+1\right). Pomnožite \frac{1}{1-x} s/z \frac{x+1}{x+1}. Pomnožite \frac{1}{1+x} s/z \frac{-x+1}{-x+1}.
\frac{\frac{x+1-\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Ker \frac{x+1}{\left(x+1\right)\left(-x+1\right)} in \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{x+1+x-1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Izvedi množenje v x+1-\left(-x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Združite podobne člene v x+1+x-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+x}
Faktorizirajte x^{2}-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite x s/z \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
\frac{x}{\left(x-1\right)\left(x+1\right)} in \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)}}
Izvedi množenje v x+x\left(x-1\right)\left(x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}
Združite podobne člene v x+x^{3}+x^{2}-x^{2}-x.
\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Delite \frac{2x}{\left(x+1\right)\left(-x+1\right)} s/z \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} tako, da pomnožite \frac{2x}{\left(x+1\right)\left(-x+1\right)} z obratno vrednostjo \frac{x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-2x\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Ekstrahirajte znak minus v x-1.
\frac{-2}{x^{2}}
Okrajšaj x\left(x+1\right)\left(-x+1\right) v števcu in imenovalcu.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}