Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Racionalizirajte imenovalec \frac{\sqrt{2}}{\sqrt{2}-18} tako, da pomnožite števec in imenovalec s \sqrt{2}+18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Razmislite o \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Kvadrat števila \sqrt{2}. Kvadrat števila 18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Odštejte 324 od 2, da dobite -322.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
Če želite dobiti potenco vrednosti \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}, potencirajte števec in imenovalec, nato pa delite.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Razčlenite \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}.
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Kvadrat vrednosti \sqrt{2} je 2.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Uporabite binomski izrek \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, da razširite \left(\sqrt{2}+18\right)^{2}.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Kvadrat vrednosti \sqrt{2} je 2.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Seštejte 2 in 324, da dobite 326.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Izračunajte potenco -322 števila 2, da dobite 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Delite 2\left(326+36\sqrt{2}\right) s/z 103684, da dobite \frac{1}{51842}\left(326+36\sqrt{2}\right).
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Uporabite distributivnost, da pomnožite \frac{1}{51842} s/z 326+36\sqrt{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Racionalizirajte imenovalec \frac{\sqrt{2}}{\sqrt{2}-18} tako, da pomnožite števec in imenovalec s \sqrt{2}+18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Razmislite o \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Kvadrat števila \sqrt{2}. Kvadrat števila 18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Odštejte 324 od 2, da dobite -322.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
Če želite dobiti potenco vrednosti \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}, potencirajte števec in imenovalec, nato pa delite.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Razčlenite \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}.
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Kvadrat vrednosti \sqrt{2} je 2.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Uporabite binomski izrek \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, da razširite \left(\sqrt{2}+18\right)^{2}.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Kvadrat vrednosti \sqrt{2} je 2.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Seštejte 2 in 324, da dobite 326.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Izračunajte potenco -322 števila 2, da dobite 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Delite 2\left(326+36\sqrt{2}\right) s/z 103684, da dobite \frac{1}{51842}\left(326+36\sqrt{2}\right).
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Uporabite distributivnost, da pomnožite \frac{1}{51842} s/z 326+36\sqrt{2}.