Preskoči na glavno vsebino
Rešitev za x
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

a+b=-7 ab=12
Če želite rešiti enačbo, faktor x^{2}-7x+12 s formulo x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
-1,-12 -2,-6 -3,-4
Ker je ab pozitivno, a in b imeti enak znak. Ker je a+b negativen, a in b sta negativna. Navedite vse takšne pare celega števila, ki nudijo 12 izdelka.
-1-12=-13 -2-6=-8 -3-4=-7
Izračunajte vsoto za vsak par.
a=-4 b=-3
Rešitev je par, ki zagotavlja vsoto -7.
\left(x-4\right)\left(x-3\right)
Faktorirati izraz za znova napišite \left(x+a\right)\left(x+b\right) z pridobljene vrednosti.
x=4 x=3
Če želite poiskati rešitve za enačbe, rešite x-4=0 in x-3=0.
a+b=-7 ab=1\times 12=12
Če želite rešiti enačbo, faktor levo roko po združiti. Najprej, na levi strani mora biti uporabnika kot x^{2}+ax+bx+12. Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
-1,-12 -2,-6 -3,-4
Ker je ab pozitivno, a in b imeti enak znak. Ker je a+b negativen, a in b sta negativna. Navedite vse takšne pare celega števila, ki nudijo 12 izdelka.
-1-12=-13 -2-6=-8 -3-4=-7
Izračunajte vsoto za vsak par.
a=-4 b=-3
Rešitev je par, ki zagotavlja vsoto -7.
\left(x^{2}-4x\right)+\left(-3x+12\right)
Znova zapišite x^{2}-7x+12 kot \left(x^{2}-4x\right)+\left(-3x+12\right).
x\left(x-4\right)-3\left(x-4\right)
Faktor x v prvem in -3 v drugi skupini.
\left(x-4\right)\left(x-3\right)
Faktor skupnega člena x-4 z uporabo lastnosti distributivnosti.
x=4 x=3
Če želite poiskati rešitve za enačbe, rešite x-4=0 in x-3=0.
x^{2}-7x+12=0
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 1 za a, -7 za b in 12 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
Kvadrat števila -7.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
Pomnožite -4 s/z 12.
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
Seštejte 49 in -48.
x=\frac{-\left(-7\right)±1}{2}
Uporabite kvadratni koren števila 1.
x=\frac{7±1}{2}
Nasprotna vrednost -7 je 7.
x=\frac{8}{2}
Zdaj rešite enačbo x=\frac{7±1}{2}, ko je ± plus. Seštejte 7 in 1.
x=4
Delite 8 s/z 2.
x=\frac{6}{2}
Zdaj rešite enačbo x=\frac{7±1}{2}, ko je ± minus. Odštejte 1 od 7.
x=3
Delite 6 s/z 2.
x=4 x=3
Enačba je zdaj rešena.
x^{2}-7x+12=0
Kvadratne enačbe, kot je ta, lahko rešite z dopolnjevanjem do popolnega kvadrata. Za dopolnjevanje do popolnega kvadrata morate enačbo najprej pretvoriti v obliko x^{2}+bx=c.
x^{2}-7x+12-12=-12
Odštejte 12 na obeh straneh enačbe.
x^{2}-7x=-12
Če število 12 odštejete od enakega števila, dobite 0.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
Delite -7, ki je koeficient člena x, z 2, da dobite -\frac{7}{2}. Nato dodajte kvadrat števila -\frac{7}{2} na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
Kvadrirajte ulomek -\frac{7}{2} tako, da kvadrirate števec in imenovalec ulomka.
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
Seštejte -12 in \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
Faktorizirajte x^{2}-7x+\frac{49}{4}. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Uporabite kvadratni koren obeh strani enačbe.
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
Poenostavite.
x=4 x=3
Prištejte \frac{7}{2} na obe strani enačbe.