Rešitev za x
x=6
x=58
Graf
Delež
Kopirano v odložišče
a+b=-64 ab=348
Če želite rešiti enačbo, faktor x^{2}-64x+348 s formulo x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
-1,-348 -2,-174 -3,-116 -4,-87 -6,-58 -12,-29
Ker je ab pozitivno, a in b imeti enak znak. Ker je a+b negativen, a in b sta negativna. Navedite vse takšne pare celega števila, ki nudijo 348 izdelka.
-1-348=-349 -2-174=-176 -3-116=-119 -4-87=-91 -6-58=-64 -12-29=-41
Izračunajte vsoto za vsak par.
a=-58 b=-6
Rešitev je par, ki zagotavlja vsoto -64.
\left(x-58\right)\left(x-6\right)
Faktorirati izraz za znova napišite \left(x+a\right)\left(x+b\right) z pridobljene vrednosti.
x=58 x=6
Če želite poiskati rešitve za enačbe, rešite x-58=0 in x-6=0.
a+b=-64 ab=1\times 348=348
Če želite rešiti enačbo, faktor levo roko po združiti. Najprej, na levi strani mora biti uporabnika kot x^{2}+ax+bx+348. Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
-1,-348 -2,-174 -3,-116 -4,-87 -6,-58 -12,-29
Ker je ab pozitivno, a in b imeti enak znak. Ker je a+b negativen, a in b sta negativna. Navedite vse takšne pare celega števila, ki nudijo 348 izdelka.
-1-348=-349 -2-174=-176 -3-116=-119 -4-87=-91 -6-58=-64 -12-29=-41
Izračunajte vsoto za vsak par.
a=-58 b=-6
Rešitev je par, ki zagotavlja vsoto -64.
\left(x^{2}-58x\right)+\left(-6x+348\right)
Znova zapišite x^{2}-64x+348 kot \left(x^{2}-58x\right)+\left(-6x+348\right).
x\left(x-58\right)-6\left(x-58\right)
Faktor x v prvem in -6 v drugi skupini.
\left(x-58\right)\left(x-6\right)
Faktor skupnega člena x-58 z uporabo lastnosti distributivnosti.
x=58 x=6
Če želite poiskati rešitve za enačbe, rešite x-58=0 in x-6=0.
x^{2}-64x+348=0
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 348}}{2}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 1 za a, -64 za b in 348 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 348}}{2}
Kvadrat števila -64.
x=\frac{-\left(-64\right)±\sqrt{4096-1392}}{2}
Pomnožite -4 s/z 348.
x=\frac{-\left(-64\right)±\sqrt{2704}}{2}
Seštejte 4096 in -1392.
x=\frac{-\left(-64\right)±52}{2}
Uporabite kvadratni koren števila 2704.
x=\frac{64±52}{2}
Nasprotna vrednost -64 je 64.
x=\frac{116}{2}
Zdaj rešite enačbo x=\frac{64±52}{2}, ko je ± plus. Seštejte 64 in 52.
x=58
Delite 116 s/z 2.
x=\frac{12}{2}
Zdaj rešite enačbo x=\frac{64±52}{2}, ko je ± minus. Odštejte 52 od 64.
x=6
Delite 12 s/z 2.
x=58 x=6
Enačba je zdaj rešena.
x^{2}-64x+348=0
Kvadratne enačbe, kot je ta, lahko rešite z dopolnjevanjem do popolnega kvadrata. Za dopolnjevanje do popolnega kvadrata morate enačbo najprej pretvoriti v obliko x^{2}+bx=c.
x^{2}-64x+348-348=-348
Odštejte 348 na obeh straneh enačbe.
x^{2}-64x=-348
Če število 348 odštejete od enakega števila, dobite 0.
x^{2}-64x+\left(-32\right)^{2}=-348+\left(-32\right)^{2}
Delite -64, ki je koeficient člena x, z 2, da dobite -32. Nato dodajte kvadrat števila -32 na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
x^{2}-64x+1024=-348+1024
Kvadrat števila -32.
x^{2}-64x+1024=676
Seštejte -348 in 1024.
\left(x-32\right)^{2}=676
Faktorizirajte x^{2}-64x+1024. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-32\right)^{2}}=\sqrt{676}
Uporabite kvadratni koren obeh strani enačbe.
x-32=26 x-32=-26
Poenostavite.
x=58 x=6
Prištejte 32 na obe strani enačbe.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}