Rešitev za x
x=8
x=4
Graf
Delež
Kopirano v odložišče
x^{2}-12x+36=4
Uporabite binomski izrek \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, da razširite \left(x-6\right)^{2}.
x^{2}-12x+36-4=0
Odštejte 4 na obeh straneh.
x^{2}-12x+32=0
Odštejte 4 od 36, da dobite 32.
a+b=-12 ab=32
Če želite rešiti enačbo, faktor x^{2}-12x+32 s formulo x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
-1,-32 -2,-16 -4,-8
Ker je ab pozitivno, a in b imeti enak znak. Ker je a+b negativen, a in b sta negativna. Navedite vse takšne pare celega števila, ki nudijo 32 izdelka.
-1-32=-33 -2-16=-18 -4-8=-12
Izračunajte vsoto za vsak par.
a=-8 b=-4
Rešitev je par, ki zagotavlja vsoto -12.
\left(x-8\right)\left(x-4\right)
Faktorirati izraz za znova napišite \left(x+a\right)\left(x+b\right) z pridobljene vrednosti.
x=8 x=4
Če želite poiskati rešitve za enačbe, rešite x-8=0 in x-4=0.
x^{2}-12x+36=4
Uporabite binomski izrek \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, da razširite \left(x-6\right)^{2}.
x^{2}-12x+36-4=0
Odštejte 4 na obeh straneh.
x^{2}-12x+32=0
Odštejte 4 od 36, da dobite 32.
a+b=-12 ab=1\times 32=32
Če želite rešiti enačbo, faktor levo roko po združiti. Najprej, na levi strani mora biti uporabnika kot x^{2}+ax+bx+32. Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
-1,-32 -2,-16 -4,-8
Ker je ab pozitivno, a in b imeti enak znak. Ker je a+b negativen, a in b sta negativna. Navedite vse takšne pare celega števila, ki nudijo 32 izdelka.
-1-32=-33 -2-16=-18 -4-8=-12
Izračunajte vsoto za vsak par.
a=-8 b=-4
Rešitev je par, ki zagotavlja vsoto -12.
\left(x^{2}-8x\right)+\left(-4x+32\right)
Znova zapišite x^{2}-12x+32 kot \left(x^{2}-8x\right)+\left(-4x+32\right).
x\left(x-8\right)-4\left(x-8\right)
Faktor x v prvem in -4 v drugi skupini.
\left(x-8\right)\left(x-4\right)
Faktor skupnega člena x-8 z uporabo lastnosti distributivnosti.
x=8 x=4
Če želite poiskati rešitve za enačbe, rešite x-8=0 in x-4=0.
x^{2}-12x+36=4
Uporabite binomski izrek \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, da razširite \left(x-6\right)^{2}.
x^{2}-12x+36-4=0
Odštejte 4 na obeh straneh.
x^{2}-12x+32=0
Odštejte 4 od 36, da dobite 32.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 32}}{2}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 1 za a, -12 za b in 32 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 32}}{2}
Kvadrat števila -12.
x=\frac{-\left(-12\right)±\sqrt{144-128}}{2}
Pomnožite -4 s/z 32.
x=\frac{-\left(-12\right)±\sqrt{16}}{2}
Seštejte 144 in -128.
x=\frac{-\left(-12\right)±4}{2}
Uporabite kvadratni koren števila 16.
x=\frac{12±4}{2}
Nasprotna vrednost -12 je 12.
x=\frac{16}{2}
Zdaj rešite enačbo x=\frac{12±4}{2}, ko je ± plus. Seštejte 12 in 4.
x=8
Delite 16 s/z 2.
x=\frac{8}{2}
Zdaj rešite enačbo x=\frac{12±4}{2}, ko je ± minus. Odštejte 4 od 12.
x=4
Delite 8 s/z 2.
x=8 x=4
Enačba je zdaj rešena.
\sqrt{\left(x-6\right)^{2}}=\sqrt{4}
Uporabite kvadratni koren obeh strani enačbe.
x-6=2 x-6=-2
Poenostavite.
x=8 x=4
Prištejte 6 na obe strani enačbe.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}