Preskoči na glavno vsebino
Rešitev za x
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\left(\sqrt{x+2}\right)^{2}=\left(x-4\right)^{2}
Kvadrirajte obe strani enačbe.
x+2=\left(x-4\right)^{2}
Izračunajte potenco \sqrt{x+2} števila 2, da dobite x+2.
x+2=x^{2}-8x+16
Uporabite binomski izrek \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, da razširite \left(x-4\right)^{2}.
x+2-x^{2}=-8x+16
Odštejte x^{2} na obeh straneh.
x+2-x^{2}+8x=16
Dodajte 8x na obe strani.
9x+2-x^{2}=16
Združite x in 8x, da dobite 9x.
9x+2-x^{2}-16=0
Odštejte 16 na obeh straneh.
9x-14-x^{2}=0
Odštejte 16 od 2, da dobite -14.
-x^{2}+9x-14=0
Prerazporedite polinom tako, da jo pretvorite v standardno obliko. Premaknite člene v vrstnem redu od najvišje do najnižje potence.
a+b=9 ab=-\left(-14\right)=14
Če želite rešiti enačbo, faktor levo roko po združiti. Najprej, na levi strani mora biti uporabnika kot -x^{2}+ax+bx-14. Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
1,14 2,7
Ker je ab pozitivno, a in b imeti enak znak. Ker je a+b pozitivno, a in b sta pozitivna. Navedite vse takšne pare celega števila, ki nudijo 14 izdelka.
1+14=15 2+7=9
Izračunajte vsoto za vsak par.
a=7 b=2
Rešitev je par, ki zagotavlja vsoto 9.
\left(-x^{2}+7x\right)+\left(2x-14\right)
Znova zapišite -x^{2}+9x-14 kot \left(-x^{2}+7x\right)+\left(2x-14\right).
-x\left(x-7\right)+2\left(x-7\right)
Faktor -x v prvem in 2 v drugi skupini.
\left(x-7\right)\left(-x+2\right)
Faktor skupnega člena x-7 z uporabo lastnosti distributivnosti.
x=7 x=2
Če želite poiskati rešitve za enačbe, rešite x-7=0 in -x+2=0.
\sqrt{7+2}=7-4
Vstavite 7 za x v enačbi \sqrt{x+2}=x-4.
3=3
Poenostavite. Vrednost x=7 ustreza enačbi.
\sqrt{2+2}=2-4
Vstavite 2 za x v enačbi \sqrt{x+2}=x-4.
2=-2
Poenostavite. Ta vrednost x=2 ne ustreza enačbi, ker imata leva in desna stran nasprotna znaka.
x=7
Enačba \sqrt{x+2}=x-4 ima enolično rešitev.