Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Faktoriziraj
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\left(2-\frac{1}{3}\right)^{2}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Pomnožite \frac{3}{2} in \frac{3}{10}, da dobite \frac{9}{20}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\times \left(\frac{5}{3}\right)^{2}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Odštejte \frac{1}{3} od 2, da dobite \frac{5}{3}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\times \frac{25}{9}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Izračunajte potenco \frac{5}{3} števila 2, da dobite \frac{25}{9}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{5}{3}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Pomnožite \frac{3}{5} in \frac{25}{9}, da dobite \frac{5}{3}.
\sqrt{\frac{\frac{\frac{9}{20}+\frac{2}{15}\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Odštejte \frac{5}{3} od \frac{9}{5}, da dobite \frac{2}{15}.
\sqrt{\frac{\frac{\frac{9}{20}+\frac{1}{5}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Pomnožite \frac{2}{15} in \frac{3}{2}, da dobite \frac{1}{5}.
\sqrt{\frac{\frac{\frac{13}{20}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Seštejte \frac{9}{20} in \frac{1}{5}, da dobite \frac{13}{20}.
\sqrt{\frac{\frac{\frac{13}{20}}{\frac{13}{5}}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Seštejte \frac{3}{5} in 2, da dobite \frac{13}{5}.
\sqrt{\frac{\frac{13}{20}\times \frac{5}{13}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Delite \frac{13}{20} s/z \frac{13}{5} tako, da pomnožite \frac{13}{20} z obratno vrednostjo \frac{13}{5}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Pomnožite \frac{13}{20} in \frac{5}{13}, da dobite \frac{1}{4}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\times \frac{13}{4}\right)}}
Seštejte \frac{1}{4} in 3, da dobite \frac{13}{4}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{1}{2}\right)}}
Pomnožite \frac{2}{13} in \frac{13}{4}, da dobite \frac{1}{2}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\times \frac{2}{3}}}
Seštejte \frac{1}{6} in \frac{1}{2}, da dobite \frac{2}{3}.
\sqrt{\frac{\frac{1}{4}}{\frac{4}{9}}}
Pomnožite \frac{2}{3} in \frac{2}{3}, da dobite \frac{4}{9}.
\sqrt{\frac{1}{4}\times \frac{9}{4}}
Delite \frac{1}{4} s/z \frac{4}{9} tako, da pomnožite \frac{1}{4} z obratno vrednostjo \frac{4}{9}.
\sqrt{\frac{9}{16}}
Pomnožite \frac{1}{4} in \frac{9}{4}, da dobite \frac{9}{16}.
\frac{3}{4}
Znova napišite kvadratni koren deljenja \frac{9}{16} kot deljenje kvadratnih korenov \frac{\sqrt{9}}{\sqrt{16}}. Vzemite kvadratni koren števca in imenovalca.