Preskoči na glavno vsebino
Odvajajte w.r.t. ϕ
Tick mark Image
Ovrednoti
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\frac{\mathrm{d}}{\mathrm{d}ϕ}(\sin(ϕ))=\left(\lim_{h\to 0}\frac{\sin(ϕ+h)-\sin(ϕ)}{h}\right)
Za funkcijo f\left(x\right) je odvod limita funkcije \frac{f\left(x+h\right)-f\left(x\right)}{h}, saj gre h v 0, če ta limita obstaja.
\lim_{h\to 0}\frac{\sin(h+ϕ)-\sin(ϕ)}{h}
Uporabite formulo za sinus vsote.
\lim_{h\to 0}\frac{\sin(ϕ)\left(\cos(h)-1\right)+\cos(ϕ)\sin(h)}{h}
Faktorizirajte \sin(ϕ).
\left(\lim_{h\to 0}\sin(ϕ)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(ϕ)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Znova napišite limito.
\sin(ϕ)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(ϕ)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Uporabite dejstvo, da je ϕ konstanta, kadar računate limite, saj gre h v 0.
\sin(ϕ)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(ϕ)
Limita \lim_{ϕ\to 0}\frac{\sin(ϕ)}{ϕ} je 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Če želite ovrednotiti limite \lim_{h\to 0}\frac{\cos(h)-1}{h}, najprej pomnožite števec in imenovalec s \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Pomnožite \cos(h)+1 s/z \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Uporabite Pitagorovo identiteto.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Znova napišite limito.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Limita \lim_{ϕ\to 0}\frac{\sin(ϕ)}{ϕ} je 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Uporabite dejstvo, da je funkcija \frac{\sin(h)}{\cos(h)+1} zvezna pri 0.
\cos(ϕ)
Vstavite vrednost 0 v izraz \sin(ϕ)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(ϕ).